Saving best model to hub
Browse files- README.md +76 -0
- config.json +60 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: jordyvl/vit-base_rvl-cdip
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vit-base_rvl_cdip-N1K_aAURC_128
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vit-base_rvl_cdip-N1K_aAURC_128
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [jordyvl/vit-base_rvl-cdip](https://huggingface.co/jordyvl/vit-base_rvl-cdip) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4634
|
21 |
+
- Accuracy: 0.8915
|
22 |
+
- Brier Loss: 0.1791
|
23 |
+
- Nll: 0.9824
|
24 |
+
- F1 Micro: 0.8915
|
25 |
+
- F1 Macro: 0.8918
|
26 |
+
- Ece: 0.0767
|
27 |
+
- Aurc: 0.0184
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 128
|
48 |
+
- eval_batch_size: 128
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 1.0 | 125 | 0.3790 | 0.8935 | 0.1649 | 1.1886 | 0.8935 | 0.8937 | 0.0488 | 0.0175 |
|
60 |
+
| No log | 2.0 | 250 | 0.3783 | 0.8958 | 0.1605 | 1.1495 | 0.8958 | 0.8959 | 0.0497 | 0.0178 |
|
61 |
+
| No log | 3.0 | 375 | 0.4065 | 0.8915 | 0.1700 | 1.0956 | 0.8915 | 0.8918 | 0.0617 | 0.0183 |
|
62 |
+
| 0.0928 | 4.0 | 500 | 0.4158 | 0.8932 | 0.1705 | 1.0843 | 0.8932 | 0.8936 | 0.0635 | 0.0183 |
|
63 |
+
| 0.0928 | 5.0 | 625 | 0.4328 | 0.8932 | 0.1721 | 1.0369 | 0.8932 | 0.8935 | 0.0673 | 0.0186 |
|
64 |
+
| 0.0928 | 6.0 | 750 | 0.4442 | 0.891 | 0.1764 | 1.0214 | 0.891 | 0.8913 | 0.0737 | 0.0183 |
|
65 |
+
| 0.0928 | 7.0 | 875 | 0.4542 | 0.8935 | 0.1770 | 1.0053 | 0.8935 | 0.8938 | 0.0722 | 0.0187 |
|
66 |
+
| 0.0125 | 8.0 | 1000 | 0.4587 | 0.891 | 0.1790 | 0.9941 | 0.891 | 0.8913 | 0.0767 | 0.0183 |
|
67 |
+
| 0.0125 | 9.0 | 1125 | 0.4616 | 0.891 | 0.1786 | 0.9847 | 0.891 | 0.8912 | 0.0767 | 0.0185 |
|
68 |
+
| 0.0125 | 10.0 | 1250 | 0.4634 | 0.8915 | 0.1791 | 0.9824 | 0.8915 | 0.8918 | 0.0767 | 0.0184 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.33.3
|
74 |
+
- Pytorch 2.2.0.dev20231002
|
75 |
+
- Datasets 2.7.1
|
76 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jordyvl/vit-base_rvl-cdip",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "letter",
|
13 |
+
"1": "form",
|
14 |
+
"2": "email",
|
15 |
+
"3": "handwritten",
|
16 |
+
"4": "advertisement",
|
17 |
+
"5": "scientific_report",
|
18 |
+
"6": "scientific_publication",
|
19 |
+
"7": "specification",
|
20 |
+
"8": "file_folder",
|
21 |
+
"9": "news_article",
|
22 |
+
"10": "budget",
|
23 |
+
"11": "invoice",
|
24 |
+
"12": "presentation",
|
25 |
+
"13": "questionnaire",
|
26 |
+
"14": "resume",
|
27 |
+
"15": "memo"
|
28 |
+
},
|
29 |
+
"image_size": 224,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 3072,
|
32 |
+
"label2id": {
|
33 |
+
"advertisement": 4,
|
34 |
+
"budget": 10,
|
35 |
+
"email": 2,
|
36 |
+
"file_folder": 8,
|
37 |
+
"form": 1,
|
38 |
+
"handwritten": 3,
|
39 |
+
"invoice": 11,
|
40 |
+
"letter": 0,
|
41 |
+
"memo": 15,
|
42 |
+
"news_article": 9,
|
43 |
+
"presentation": 12,
|
44 |
+
"questionnaire": 13,
|
45 |
+
"resume": 14,
|
46 |
+
"scientific_publication": 6,
|
47 |
+
"scientific_report": 5,
|
48 |
+
"specification": 7
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-12,
|
51 |
+
"model_type": "vit",
|
52 |
+
"num_attention_heads": 12,
|
53 |
+
"num_channels": 3,
|
54 |
+
"num_hidden_layers": 12,
|
55 |
+
"patch_size": 16,
|
56 |
+
"problem_type": "single_label_classification",
|
57 |
+
"qkv_bias": true,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.33.3"
|
60 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f284ba6127d13e177d814562205f7620f6b82a2c8aca0bb5ae6d9fd44b1a858e
|
3 |
+
size 343312234
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eb02e61f0b68f1addfd5fd846d703dffc3a6e8e2a82f8ac46185daa41335bea
|
3 |
+
size 4920
|