Saving best model to hub
Browse files- README.md +76 -0
- config.json +60 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: jordyvl/vit-base_rvl-cdip
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vit-base_rvl_cdip-N1K_aAURC_32
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vit-base_rvl_cdip-N1K_aAURC_32
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [jordyvl/vit-base_rvl-cdip](https://huggingface.co/jordyvl/vit-base_rvl-cdip) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5215
|
21 |
+
- Accuracy: 0.888
|
22 |
+
- Brier Loss: 0.1918
|
23 |
+
- Nll: 0.9026
|
24 |
+
- F1 Micro: 0.888
|
25 |
+
- F1 Macro: 0.8883
|
26 |
+
- Ece: 0.0880
|
27 |
+
- Aurc: 0.0205
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| 0.1629 | 1.0 | 500 | 0.3779 | 0.8875 | 0.1721 | 1.1899 | 0.8875 | 0.8877 | 0.0531 | 0.0201 |
|
60 |
+
| 0.1234 | 2.0 | 1000 | 0.4074 | 0.8868 | 0.1790 | 1.1333 | 0.8868 | 0.8874 | 0.0647 | 0.0213 |
|
61 |
+
| 0.0616 | 3.0 | 1500 | 0.4257 | 0.888 | 0.1813 | 1.0677 | 0.888 | 0.8879 | 0.0695 | 0.0201 |
|
62 |
+
| 0.0303 | 4.0 | 2000 | 0.4595 | 0.885 | 0.1869 | 1.0256 | 0.885 | 0.8856 | 0.0776 | 0.0222 |
|
63 |
+
| 0.0133 | 5.0 | 2500 | 0.4902 | 0.8848 | 0.1922 | 0.9983 | 0.8848 | 0.8849 | 0.0831 | 0.0228 |
|
64 |
+
| 0.0083 | 6.0 | 3000 | 0.4941 | 0.8862 | 0.1903 | 0.9464 | 0.8862 | 0.8868 | 0.0850 | 0.0211 |
|
65 |
+
| 0.0051 | 7.0 | 3500 | 0.5116 | 0.8875 | 0.1928 | 0.9118 | 0.8875 | 0.8873 | 0.0875 | 0.0207 |
|
66 |
+
| 0.0043 | 8.0 | 4000 | 0.5154 | 0.8882 | 0.1910 | 0.9138 | 0.8882 | 0.8887 | 0.0864 | 0.0205 |
|
67 |
+
| 0.0041 | 9.0 | 4500 | 0.5221 | 0.8865 | 0.1924 | 0.9101 | 0.8865 | 0.8868 | 0.0896 | 0.0206 |
|
68 |
+
| 0.0037 | 10.0 | 5000 | 0.5215 | 0.888 | 0.1918 | 0.9026 | 0.888 | 0.8883 | 0.0880 | 0.0205 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.33.3
|
74 |
+
- Pytorch 2.2.0.dev20231002
|
75 |
+
- Datasets 2.7.1
|
76 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "jordyvl/vit-base_rvl-cdip",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "letter",
|
13 |
+
"1": "form",
|
14 |
+
"2": "email",
|
15 |
+
"3": "handwritten",
|
16 |
+
"4": "advertisement",
|
17 |
+
"5": "scientific_report",
|
18 |
+
"6": "scientific_publication",
|
19 |
+
"7": "specification",
|
20 |
+
"8": "file_folder",
|
21 |
+
"9": "news_article",
|
22 |
+
"10": "budget",
|
23 |
+
"11": "invoice",
|
24 |
+
"12": "presentation",
|
25 |
+
"13": "questionnaire",
|
26 |
+
"14": "resume",
|
27 |
+
"15": "memo"
|
28 |
+
},
|
29 |
+
"image_size": 224,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 3072,
|
32 |
+
"label2id": {
|
33 |
+
"advertisement": 4,
|
34 |
+
"budget": 10,
|
35 |
+
"email": 2,
|
36 |
+
"file_folder": 8,
|
37 |
+
"form": 1,
|
38 |
+
"handwritten": 3,
|
39 |
+
"invoice": 11,
|
40 |
+
"letter": 0,
|
41 |
+
"memo": 15,
|
42 |
+
"news_article": 9,
|
43 |
+
"presentation": 12,
|
44 |
+
"questionnaire": 13,
|
45 |
+
"resume": 14,
|
46 |
+
"scientific_publication": 6,
|
47 |
+
"scientific_report": 5,
|
48 |
+
"specification": 7
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-12,
|
51 |
+
"model_type": "vit",
|
52 |
+
"num_attention_heads": 12,
|
53 |
+
"num_channels": 3,
|
54 |
+
"num_hidden_layers": 12,
|
55 |
+
"patch_size": 16,
|
56 |
+
"problem_type": "single_label_classification",
|
57 |
+
"qkv_bias": true,
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.33.3"
|
60 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38b677b36fc24e2619009f5d450a24ce0562862cdd05acd64540e8ec376f7de9
|
3 |
+
size 343312234
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43e5babbebf75e126faa615d10d82780531ea4a97e80a289e36972542afafdff
|
3 |
+
size 4920
|