File size: 1,206 Bytes
e0adf37
49e36bd
e0adf37
49e36bd
 
 
 
 
e0adf37
 
49e36bd
 
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
e0adf37
49e36bd
41acd76
 
49e36bd
 
41acd76
 
49e36bd
 
 
 
 
e0adf37
49e36bd
e0adf37
 
 
 
 
49e36bd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
model-index:
- name: whisper-large-v0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v0

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0