--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: final results: [] --- # final This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3507 - Accuracy: 0.8945 - F1: 0.8863 - Recall: 0.8760 - Precision: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 5151 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.485 | 0.9756 | 80 | 0.3916 | 0.8182 | 0.7984 | 0.7674 | 0.8319 | | 0.3395 | 1.9512 | 160 | 0.3039 | 0.8764 | 0.8547 | 0.7752 | 0.9524 | | 0.2139 | 2.9268 | 240 | 0.3122 | 0.8691 | 0.8548 | 0.8217 | 0.8908 | | 0.084 | 3.9024 | 320 | 0.3507 | 0.8945 | 0.8863 | 0.8760 | 0.8968 | | 0.058 | 4.8780 | 400 | 0.5087 | 0.8727 | 0.8571 | 0.8140 | 0.9052 | | 0.0389 | 5.8537 | 480 | 0.4579 | 0.8982 | 0.888 | 0.8605 | 0.9174 | | 0.0264 | 6.8293 | 560 | 0.5052 | 0.8873 | 0.8765 | 0.8527 | 0.9016 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1