File size: 22,916 Bytes
26371b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
"""PyTorch TaiVisionLM"""
import torch
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM
from transformers.utils import logging, add_start_docstrings, ModelOutput
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
from torch import nn
from transformers.cache_utils import Cache, StaticCache
logger = logging.get_logger(__name__)
from .configuration_taivisionlm import TaiVisionLMConfig
_CONFIG_FOR_DOC = "TaiVisionLMConfig"
@dataclass
class TaiVisionCausalLMOutputWithPast(ModelOutput):
"""
Base class for TaiVision language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class TaiVisionMultiModalProjector(nn.Module):
"""
Multimodal projector that cast the image features into the same dimension space as the language model
"""
def __init__(self, config: TaiVisionLMConfig, dropout=0.1):
super().__init__()
self.net = nn.Sequential(
nn.Linear(config.vision_config.projection_dim, 4*config.vision_config.projection_dim, bias=True),
nn.GELU(),
nn.Linear(4*config.vision_config.projection_dim, config.hidden_size, bias=True),
nn.Dropout(dropout)
)
def forward(self, image_features):
hidden_states = self.net(image_features).to(image_features.dtype)
return hidden_states
TRAVISIONLM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`TaiVisionLMConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare TaiVision Model outputting raw hidden-states without any specific head on top.",
TRAVISIONLM_START_DOCSTRING,
)
class TaiVisionPreTrainedModel(PreTrainedModel):
config_class = TaiVisionLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["TaiVisionMultiModalProjector"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
# Do NOT init the weights of the model using this class call, this is a ported version,
# hence not intended to be trained from scratch.
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
@add_start_docstrings(
"""The TaiVisionLM model which consists of a vision backbone and a language model.""",
TRAVISIONLM_START_DOCSTRING,
)
class TaiVisionForCausalLM(TaiVisionPreTrainedModel):
def __init__(self, config: TaiVisionLMConfig):
super(TaiVisionForCausalLM, self).__init__(config)
self.vocab_size = config.text_config.vocab_size
self.pad_token_id = -1 if config.pad_token_id == None else config.pad_token_id
self._attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.vision_projector = TaiVisionMultiModalProjector(config)
language_model = AutoModelForCausalLM.from_config(
config=config.text_config, attn_implementation=self._attn_implementation
)
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
self.post_init()
def load_pretrained(self):
'''
load the pretrained weights for language model and vision model
'''
import transformers
language_model = AutoModelForCausalLM.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-chat")
if language_model.vocab_size != self.vocab_size:
print("vocab size mismatch, resize the token embeddings for the pretained language model")
language_model.resize_token_embeddings(self.vocab_size)
self.language_model = language_model
vision_model = transformers.SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
self.vision_tower = vision_model
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_input_embeddings with PaliGemma->TaiVisionLM
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_input_embeddings with PaliGemma->TaiVisionLM
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_output_embeddings with PaliGemma->TaiVisionLM
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_output_embeddings with PaliGemma->TaiVisionLM
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_decoder with PaliGemma->TaiVisionLM
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_decoder with PaliGemma->TaiVisionLM
def get_decoder(self):
return self.language_model.get_decoder()
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.tie_weights with PaliGemma->TaiVisionLM
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
# TODO: config.vocab_size is deprecated and will be removed in v4.43.
# `resize_token_embeddings` should work from `modeling_utils.py``
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration._merge_input_ids_with_image_features with PaliGemma->TaiVisionLM
def _update_causal_mask(
self, attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training: bool = False
):
using_static_cache = isinstance(past_key_values, StaticCache)
dtype, device = inputs_embeds.dtype, inputs_embeds.device
min_dtype = torch.finfo(dtype).min
sequence_length = inputs_embeds.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
if is_training:
causal_mask = torch.triu(causal_mask, diagonal=1)
else:
causal_mask = torch.zeros_like(causal_mask)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_embeds.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
if is_training:
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
)
return causal_mask
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TaiVisionCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
>>> prompt = "answer en Where is the cow standing?"
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"answer en Where is the cow standing?\nbeach"
```"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
is_training = token_type_ids is not None and labels is not None
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
# Merge text and images
if pixel_values is not None:
image_outputs = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
selected_image_feature = image_outputs.last_hidden_state
image_features = self.vision_projector(selected_image_feature)
image_features = image_features / (self.config.hidden_size**0.5)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
if inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
raise ValueError(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
"tokens from image embeddings."
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# mask out pad-token-ids in labels for BC
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
)
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training
)
outputs = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = outputs.logits
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
shift_attention_mask = attention_mask[..., 1:]
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return TaiVisionCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
**kwargs,
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
**kwargs,
)
model_inputs["token_type_ids"] = token_type_ids
# position_ids in Paligemma are 1-indexed
if model_inputs.get("position_ids") is not None:
model_inputs["position_ids"] += 1
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
return model_inputs
if __name__ == '__main__':
import transformers
config = transformers.AutoConfig.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True)
model = TaiVisionForCausalLM(config).to("cuda")
print(model)
model.save_pretrained
# Test forward
import torch
from PIL import Image
import requests
# Initialize processor
processor = transformers.AutoProcessor.from_pretrained("benchang1110/TaiVision-base", trust_remote_code=True)
# Load image
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
# Define prompt and label
prompt = "What is the color of the car?"
label = "I am fine, thank you."
# Process inputs
inputs = processor(prompts=prompt,images=image, return_tensors="pt", padding=False, max_length=512).to('cuda')
outputs = model.generate(**inputs, max_length=512, do_sample=True, pad_token_id=processor.tokenizer.pad_token_id)
print(processor.decode(outputs[0], skip_special_tokens=True))
|