|
"""TaiVisionLM configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
from transformers import logging, CONFIG_MAPPING |
|
import warnings |
|
import transformers |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class TaiVisionLMConfig(PretrainedConfig): |
|
model_type = "taivisionlm" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_idx=32000, |
|
vocab_size=32001, |
|
projection_dim=768, |
|
hidden_size=2048, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_idx |
|
self._vocab_size = vocab_size |
|
self.projection_dim = projection_dim |
|
self.hidden_size = hidden_size |
|
self.vision_config = vision_config |
|
self.is_encoder_decoder = False |
|
|
|
if isinstance(self.vision_config, dict): |
|
vision_config["model_type"] = ( |
|
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" |
|
) |
|
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) |
|
elif vision_config is None: |
|
self.vision_config = CONFIG_MAPPING["siglip_vision_model"]( |
|
attention_dropout=0.0, |
|
hidden_act="gelu_pytorch_tanh", |
|
hidden_size=768, |
|
image_size=224, |
|
intermediate_size=3072, |
|
layer_norm_eps=1e-06, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
num_hidden_layers=12, |
|
patch_size=16, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.text_config = text_config |
|
|
|
if isinstance(self.text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gpt2" |
|
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
elif text_config is None: |
|
self.text_config = CONFIG_MAPPING["llama"]( |
|
architecture= ["LlamaForCausalLM"], |
|
hidden_act = "silu", |
|
attention_bias = False, |
|
attention_dropout = 0.0, |
|
bos_token_id = 1, |
|
eos_token_id = 2, |
|
hidden_size = 2048, |
|
initializer_range = 0.02, |
|
intermediate_size = 5632, |
|
max_position_embeddings = 2048, |
|
model_type = "llama", |
|
num_attention_heads = 32, |
|
num_hidden_layers = 22, |
|
num_key_value_heads = 4, |
|
pretraining_tp = 1, |
|
rms_norm_eps = 1e-05, |
|
rope_scaling = None, |
|
rope_theta = 10000.0, |
|
tie_word_embeddings = False, |
|
torch_dtype = "bfloat16", |
|
transformers_version = "4.40.2", |
|
use_cache = True, |
|
vocab_size = 32001 |
|
) |
|
self.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2 |
|
self.pad_token_id = self.text_config.pad_token_id |
|
self.vision_config.projection_dim = projection_dim |
|
super().__init__(**kwargs) |
|
|
|
@property |
|
def vocab_size(self): |
|
warnings.warn( |
|
"The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.", |
|
FutureWarning, |
|
) |
|
return self._vocab_size |
|
|
|
@vocab_size.setter |
|
def vocab_size(self, value): |
|
self._vocab_size = value |
|
|
|
def to_dict(self): |
|
output = super().to_dict() |
|
output.pop("_vocab_size", None) |
|
return output |
|
|
|
|