benchang1110
commited on
Commit
•
b48abc0
1
Parent(s):
a362e35
Upload processor
Browse files- added_tokens.json +3 -0
- preprocessor_config.json +28 -0
- processing_taivisionlm.py +320 -0
- processor_config.json +7 -0
- special_tokens_map.json +39 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +59 -0
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image>": 32000
|
3 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_taivisionlm.TaiVisionProcessor"
|
4 |
+
},
|
5 |
+
"do_convert_rgb": null,
|
6 |
+
"do_normalize": true,
|
7 |
+
"do_rescale": true,
|
8 |
+
"do_resize": true,
|
9 |
+
"image_mean": [
|
10 |
+
0.5,
|
11 |
+
0.5,
|
12 |
+
0.5
|
13 |
+
],
|
14 |
+
"image_processor_type": "SiglipImageProcessor",
|
15 |
+
"image_seq_length": 196,
|
16 |
+
"image_std": [
|
17 |
+
0.5,
|
18 |
+
0.5,
|
19 |
+
0.5
|
20 |
+
],
|
21 |
+
"processor_class": "TaiVisionProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"height": 224,
|
26 |
+
"width": 224
|
27 |
+
}
|
28 |
+
}
|
processing_taivisionlm.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Processor class for TraVisionLM.
|
3 |
+
"""
|
4 |
+
import transformers
|
5 |
+
import logging
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
from transformers.feature_extraction_utils import BatchFeature
|
9 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
10 |
+
from transformers.processing_utils import ProcessorMixin
|
11 |
+
from transformers.tokenization_utils import (
|
12 |
+
AddedToken,
|
13 |
+
PaddingStrategy,
|
14 |
+
PreTokenizedInput,
|
15 |
+
TextInput,
|
16 |
+
TruncationStrategy,
|
17 |
+
)
|
18 |
+
from transformers.utils import TensorType
|
19 |
+
from .configuration_taivisionlm import TaiVisionLMConfig
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
IMAGE_TOKEN = "<image>"
|
24 |
+
|
25 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
26 |
+
def is_url(val) -> bool:
|
27 |
+
return isinstance(val, str) and val.startswith("http")
|
28 |
+
|
29 |
+
|
30 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
31 |
+
def is_image_or_image_url(elem):
|
32 |
+
return is_url(elem) or is_valid_image(elem)
|
33 |
+
|
34 |
+
# Copied from transformers.models.paligemma.processing_paligemma._is_str_or_image
|
35 |
+
def _is_str_or_image(elem):
|
36 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
37 |
+
|
38 |
+
|
39 |
+
def build_string_from_input(image_seq_len, image_token):
|
40 |
+
"""
|
41 |
+
Builds a string from the input prompt and image tokens.
|
42 |
+
For example, for the call:
|
43 |
+
build_string_from_input(
|
44 |
+
image_seq_len=3,
|
45 |
+
image_token="<im>",
|
46 |
+
)
|
47 |
+
The output will be:
|
48 |
+
"<im><im><im>"
|
49 |
+
Args:
|
50 |
+
image_seq_len (`int`): The length of the image sequence.
|
51 |
+
image_token (`str`): The image token.
|
52 |
+
"""
|
53 |
+
return f"{image_token * image_seq_len}"
|
54 |
+
|
55 |
+
|
56 |
+
class TaiVisionProcessor(ProcessorMixin):
|
57 |
+
r"""
|
58 |
+
Constructs a TraVision processor which wraps a SigLIP image processor and a GPT2 tokenizer into a single processor.
|
59 |
+
|
60 |
+
[`TaiVisionProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
61 |
+
[`~TaiVisionProcessor.__call__`] and [`~TaiVisionProcessor.decode`] for more information.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
image_processor ([`SiglipImageProcessor`], *optional*):
|
65 |
+
The image processor is a required input.
|
66 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
67 |
+
The tokenizer is a required input.
|
68 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
69 |
+
in a chat into a tokenizable string.
|
70 |
+
"""
|
71 |
+
|
72 |
+
attributes = ["image_processor", "tokenizer"]
|
73 |
+
valid_kwargs = ["chat_template"]
|
74 |
+
image_processor_class = "SiglipImageProcessor"
|
75 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
image_processor=None,
|
80 |
+
tokenizer=None,
|
81 |
+
chat_template=None,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
if image_processor is None:
|
85 |
+
raise ValueError("You need to specify an `image_processor`.")
|
86 |
+
if tokenizer is None:
|
87 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
88 |
+
if not hasattr(image_processor, "image_seq_length"):
|
89 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
90 |
+
|
91 |
+
self.image_seq_length = image_processor.image_seq_length
|
92 |
+
|
93 |
+
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
|
94 |
+
tokens_to_add = {"additional_special_tokens": [image_token]}
|
95 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
96 |
+
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
97 |
+
tokenizer.add_bos_token = False
|
98 |
+
tokenizer.add_eos_token = False
|
99 |
+
|
100 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
101 |
+
|
102 |
+
def __call__(
|
103 |
+
self,
|
104 |
+
prompts: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
105 |
+
images: ImageInput = None,
|
106 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
107 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
108 |
+
max_length=None,
|
109 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
110 |
+
do_resize: bool = None,
|
111 |
+
do_normalize: bool = None,
|
112 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
113 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
114 |
+
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
115 |
+
input_data_format: Optional[
|
116 |
+
Union[str, "ChannelDimension"] # noqa: F821
|
117 |
+
] = None,
|
118 |
+
resample: "PILImageResampling" = None, # noqa: F821
|
119 |
+
do_convert_rgb: bool = None,
|
120 |
+
do_thumbnail: bool = None,
|
121 |
+
do_align_long_axis: bool = None,
|
122 |
+
do_rescale: bool = None,
|
123 |
+
labels: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
124 |
+
) -> BatchFeature:
|
125 |
+
"""
|
126 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
127 |
+
and `kwargs` arguments to GPT2TokenizerFast's [`~GPT2TokenizerFast.__call__`] if `text` is not `None` to encode
|
128 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
129 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
130 |
+
of the above two methods for more information.
|
131 |
+
|
132 |
+
The usage for TraVisionLM fine-tuning preparation follows a standard 4D causal mask where only the prompt and label tokens
|
133 |
+
are attended in an auto-regressive manner. The label in `text` are to be passed separately to the __call__ function and
|
134 |
+
will be placed after the prompt, which is the instruction to steer the model generation.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
prompts (`str`, `List[str]`, `List[List[str]]`):
|
138 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
139 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
140 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
141 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
142 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
143 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
144 |
+
number of channels, H and W are \image height and width.
|
145 |
+
tokenize_newline_separately (`bool`, defaults to `False`):
|
146 |
+
Adds a separately tokenized '\n' at the end of the prompt.
|
147 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
148 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
149 |
+
index) among:
|
150 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
151 |
+
sequence if provided).
|
152 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
153 |
+
acceptable input length for the model if that argument is not provided.
|
154 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
155 |
+
lengths).
|
156 |
+
max_length (`int`, *optional*):
|
157 |
+
Maximum length of the returned list and optionally padding length (see above).
|
158 |
+
truncation (`bool`, *optional*):
|
159 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
160 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
161 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
162 |
+
|
163 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
164 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
165 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
166 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
167 |
+
labels (`str`, `List[str]`, `List[List[str]]`):
|
168 |
+
The label or batch of labels to be encoded. Only necessary for training.
|
169 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
170 |
+
The text or batch of text to be encoded. If provided, the prompt and label should be
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
174 |
+
|
175 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `label`
|
176 |
+
is provided, the `input_ids` will also contain the label input ids.
|
177 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
178 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
179 |
+
`None`).
|
180 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
181 |
+
- **labels** -- Labels compatible with training if `label` is not None
|
182 |
+
"""
|
183 |
+
|
184 |
+
# return_token_type_ids = True if labels is not None else False
|
185 |
+
return_token_type_ids = True
|
186 |
+
|
187 |
+
if images is None:
|
188 |
+
raise ValueError("`images` are expected as arguments to a `TraVisionProcessor` instance.")
|
189 |
+
|
190 |
+
images = [images] if not isinstance(images, list) else images
|
191 |
+
|
192 |
+
if prompts is None:
|
193 |
+
logger.warning_once(
|
194 |
+
"You are using TaiVisionLM without a text prefix. It will perform as a picture-captioning model."
|
195 |
+
)
|
196 |
+
prompts = "描述這張圖片" # default prompt if it is not provided as an argument
|
197 |
+
if len(images) != 1:
|
198 |
+
prompts = [prompts] * len(images)
|
199 |
+
|
200 |
+
if isinstance(prompts, List) and isinstance(images, List):
|
201 |
+
if len(images) < len(text):
|
202 |
+
raise ValueError(
|
203 |
+
f"Received {len(images)} images for {len(prompts)} prompts. Each prompt should be associated with an image."
|
204 |
+
)
|
205 |
+
if _is_str_or_image(prompts):
|
206 |
+
prompts = [prompts]
|
207 |
+
elif isinstance(prompts, list) and _is_str_or_image(prompts[0]):
|
208 |
+
pass
|
209 |
+
|
210 |
+
# add \n after image tokens
|
211 |
+
prompts = [f"\n<|user|>\n{prompt}{self.tokenizer.eos_token}\n" for prompt in prompts]
|
212 |
+
# TODO: tokenize the prompt twice, and check if the prompt is too long
|
213 |
+
prompt_length = [len(self.tokenizer.tokenize(prompt)) + self.image_seq_length for prompt in prompts]
|
214 |
+
|
215 |
+
|
216 |
+
if labels is not None:
|
217 |
+
if _is_str_or_image(labels):
|
218 |
+
labels = [labels] # convert it to list if it is a string
|
219 |
+
labels = [f"<|assistant|>\n{label}{self.tokenizer.eos_token}" for label in labels]
|
220 |
+
|
221 |
+
text = [f"{prompt}{label}" for prompt, label in zip(prompts, labels)]
|
222 |
+
|
223 |
+
else:
|
224 |
+
text = prompts
|
225 |
+
|
226 |
+
assert len(images) == len(text), "The number of images and text should be the same."
|
227 |
+
|
228 |
+
input_strings = [
|
229 |
+
build_string_from_input(
|
230 |
+
image_seq_len=self.image_seq_length,
|
231 |
+
image_token=IMAGE_TOKEN,
|
232 |
+
)
|
233 |
+
for _ in text
|
234 |
+
]
|
235 |
+
|
236 |
+
# this will do some image processing, like resizing, normalizing, etc.
|
237 |
+
pixel_values = self.image_processor(
|
238 |
+
images,
|
239 |
+
do_resize=do_resize,
|
240 |
+
do_normalize=do_normalize,
|
241 |
+
return_tensors=return_tensors,
|
242 |
+
image_mean=image_mean,
|
243 |
+
image_std=image_std,
|
244 |
+
input_data_format=input_data_format,
|
245 |
+
data_format=data_format,
|
246 |
+
resample=resample,
|
247 |
+
do_convert_rgb=do_convert_rgb,
|
248 |
+
)["pixel_values"]
|
249 |
+
|
250 |
+
if max_length is not None:
|
251 |
+
max_length += self.image_seq_length # max_length has to account for the image tokens
|
252 |
+
|
253 |
+
inputs = self.tokenizer(
|
254 |
+
input_strings,
|
255 |
+
text_pair=text,
|
256 |
+
return_tensors=return_tensors,
|
257 |
+
padding=padding,
|
258 |
+
max_length=max_length,
|
259 |
+
truncation=truncation,
|
260 |
+
return_token_type_ids=return_token_type_ids,
|
261 |
+
)
|
262 |
+
|
263 |
+
return_data = {**inputs, "pixel_values": pixel_values}
|
264 |
+
|
265 |
+
# we are doing training, so we need to return the labels
|
266 |
+
if labels is not None:
|
267 |
+
# fill the labels with -100 where we don't have to compute the loss
|
268 |
+
# mask the padding part
|
269 |
+
labels = inputs["input_ids"].masked_fill(inputs["attention_mask"] == 0, -100)
|
270 |
+
# mask the image + prompt part, so that we don't train the model to predict the image tokens
|
271 |
+
import torch
|
272 |
+
prompt_length_tensor = torch.tensor(prompt_length)
|
273 |
+
labels = labels.masked_fill(torch.arange(labels.size(1)).unsqueeze(0) < prompt_length_tensor.unsqueeze(1), -100)
|
274 |
+
return_data.update({"labels": labels})
|
275 |
+
|
276 |
+
return BatchFeature(data=return_data)
|
277 |
+
|
278 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->GPT2
|
279 |
+
def batch_decode(self, *args, **kwargs):
|
280 |
+
"""
|
281 |
+
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
282 |
+
refer to the docstring of this method for more information.
|
283 |
+
"""
|
284 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
285 |
+
|
286 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->GPT2
|
287 |
+
def decode(self, *args, **kwargs):
|
288 |
+
"""
|
289 |
+
This method forwards all its arguments to GPT2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
290 |
+
the docstring of this method for more information.
|
291 |
+
"""
|
292 |
+
return self.tokenizer.decode(*args, **kwargs)
|
293 |
+
|
294 |
+
@property
|
295 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->TraVision
|
296 |
+
def model_input_names(self):
|
297 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
298 |
+
image_processor_input_names = self.image_processor.model_input_names
|
299 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
300 |
+
|
301 |
+
|
302 |
+
# if __name__ == '__main__':
|
303 |
+
# config = TaiVisionLMConfig.from_pretrained("./")
|
304 |
+
# preprocessor = transformers.SiglipImageProcessor.from_pretrained("google/siglip-base-patch16-224")
|
305 |
+
# preprocessor.image_seq_length = config.num_image_tokens
|
306 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-chat")
|
307 |
+
# processor = TaiVisionProcessor(tokenizer=tokenizer, image_processor=preprocessor)
|
308 |
+
# processor.save_pretrained("./")
|
309 |
+
|
310 |
+
# from PIL import Image
|
311 |
+
# import requests
|
312 |
+
# processor = TaiVisionProcessor.from_pretrained("./")
|
313 |
+
# url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
|
314 |
+
# image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
315 |
+
# prompt = "Hello< what is your name?"
|
316 |
+
# label = "I am fine, thank you."
|
317 |
+
# inputs = processor(prompts=prompt, labels=label,images=image, return_tensors="pt",padding="max_length",max_length=512)
|
318 |
+
# for key, value in inputs.items():
|
319 |
+
# print(f"{key}: {value}")
|
320 |
+
# print(processor.decode(inputs.input_ids.tolist()[0]))
|
processor_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_taivisionlm.TaiVisionProcessor"
|
4 |
+
},
|
5 |
+
"chat_template": null,
|
6 |
+
"processor_class": "TaiVisionProcessor"
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<image>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "</s>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<unk>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"unk_token": {
|
33 |
+
"content": "<unk>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
}
|
39 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<image>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"additional_special_tokens": [
|
40 |
+
"<image>"
|
41 |
+
],
|
42 |
+
"auto_map": {
|
43 |
+
"AutoProcessor": "processing_taivisionlm.TaiVisionProcessor"
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
47 |
+
"clean_up_tokenization_spaces": false,
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"legacy": false,
|
50 |
+
"model_max_length": 2048,
|
51 |
+
"pad_token": "<unk>",
|
52 |
+
"padding_side": "right",
|
53 |
+
"processor_class": "TaiVisionProcessor",
|
54 |
+
"sp_model_kwargs": {},
|
55 |
+
"spaces_between_special_tokens": false,
|
56 |
+
"tokenizer_class": "LlamaTokenizer",
|
57 |
+
"unk_token": "<unk>",
|
58 |
+
"use_default_system_prompt": false
|
59 |
+
}
|