benchang1110
commited on
Commit
•
cdf3527
1
Parent(s):
1e70f2b
Update README.md
Browse files
README.md
CHANGED
@@ -9,18 +9,15 @@ pipeline_tag: image-text-to-text
|
|
9 |
|
10 |
# Model Card for Model ID
|
11 |
|
12 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
-
|
14 |
-
|
15 |
|
16 |
## Model Details
|
17 |
|
18 |
## English
|
19 |
# TaiVisionLM: The First of Its Kind! 🚀
|
20 |
|
21 |
-
🌟 This is a
|
22 |
|
23 |
-
✨ Developed compatible with the Transformers library, TaiVisionLM is
|
24 |
|
25 |
Ready to experience the Traditional Chinese visual language model? Let's go! 🖼️🤖
|
26 |
|
@@ -28,32 +25,38 @@ Ready to experience the Traditional Chinese visual language model? Let's go!
|
|
28 |
## Traditional Chinese
|
29 |
# 臺視: 首創獨一無二的視覺語言模型!! 🚀
|
30 |
|
31 |
-
🌟 TaiVisionLM
|
32 |
|
33 |
-
✨ TaiVisionLM
|
34 |
|
35 |
-
|
36 |
|
37 |
|
38 |
|
39 |
---
|
40 |
|
41 |
-
|
42 |
|
43 |
## English
|
44 |
-
This model is a multimodal large language model that combines [SigLIP](https://huggingface.co/
|
45 |
Its architecture closely resembles [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma).
|
46 |
|
47 |
Here's the summary of the development process:
|
48 |
|
49 |
1) **Unimodal pretraining**
|
50 |
-
- In this stage, instead of pretraining both modalities from scratch, I leverage the image encoder from [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224
|
51 |
2) **Feature Alignment**
|
52 |
-
-
|
53 |
3) **Task Specific Training**
|
54 |
-
- The aligned model undergoes further training for tasks such as short captioning, detailed captioning, and simple visual question answering
|
55 |
We will undergo this stage after the dataset is ready!
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
## 中文
|
58 |
這個模型是一個多模態的語言模型,結合了 [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) 作為其視覺編碼器,並使用 [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) 作為語言模型。視覺投影器將這兩種模態結合在一起。
|
59 |
其架構與 [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma) 非常相似。
|
@@ -63,18 +66,15 @@ Here's the summary of the development process:
|
|
63 |
1) **單模態預訓練**
|
64 |
- 在這個階段,我利用了 [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) 的圖像編碼器,以及我們自己訓練的語言模型([Taiwan-tinyllama-v1.0-chat](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat))。
|
65 |
2) **特徵對齊**
|
66 |
-
-
|
67 |
3) **任務特定訓練**
|
68 |
-
-
|
69 |
-
|
70 |
-
### Model Description
|
71 |
-
<!-- Provide a longer summary of what this model is. -->
|
72 |
-
|
73 |
-
- **Developed by:** [benchang1110](https://huggingface.co/benchang1110)
|
74 |
-
- **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
|
75 |
-
- **Language(s) (NLP):** *Traditional Chinese*
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
78 |
---
|
79 |
|
80 |
## How to Get Started with the Model
|
|
|
9 |
|
10 |
# Model Card for Model ID
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
## English
|
16 |
# TaiVisionLM: The First of Its Kind! 🚀
|
17 |
|
18 |
+
🌟 This is a small (only 1.2B parameters) visual language model on Hugging Face that responds to Traditional Chinese instructions given an image input! 🌟
|
19 |
|
20 |
+
✨ Developed compatible with the Transformers library, TaiVisionLM is quick to load, fine-tune, and use for lightning-fast inferences without needing any external libraries! ⚡️
|
21 |
|
22 |
Ready to experience the Traditional Chinese visual language model? Let's go! 🖼️🤖
|
23 |
|
|
|
25 |
## Traditional Chinese
|
26 |
# 臺視: 首創獨一無二的視覺語言模型!! 🚀
|
27 |
|
28 |
+
🌟 TaiVisionLM 是一個小型的視覺語言模型(僅有 12 億參數),可以根據圖像輸入來回覆繁體中文指令!🌟
|
29 |
|
30 |
+
✨ TaiVisionLM 可以用 transformers 載入、微調和使用!⚡️
|
31 |
|
32 |
+
準備好體驗"臺視"了嗎?讓我們開始吧!🖼️🤖
|
33 |
|
34 |
|
35 |
|
36 |
---
|
37 |
|
38 |
+
### Model Description
|
39 |
|
40 |
## English
|
41 |
+
This model is a multimodal large language model that combines [SigLIP](https://huggingface.co/google/siglip-base-patch16-224) as its vision encoder with [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) as its language model. The vision projector connects the two modalities together.
|
42 |
Its architecture closely resembles [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma).
|
43 |
|
44 |
Here's the summary of the development process:
|
45 |
|
46 |
1) **Unimodal pretraining**
|
47 |
+
- In this stage, instead of pretraining both modalities from scratch, I leverage the image encoder from [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224) and the language model trained by ourselves (https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat).
|
48 |
2) **Feature Alignment**
|
49 |
+
- I train the vision projector and language model using LoRA using 1B image-text pairs to align visual and textual features.
|
50 |
3) **Task Specific Training**
|
51 |
+
- The aligned model undergoes further training for tasks such as short captioning, detailed captioning, and simple visual question answering.
|
52 |
We will undergo this stage after the dataset is ready!
|
53 |
|
54 |
+
|
55 |
+
|
56 |
+
- **Developed by:** [benchang1110](https://huggingface.co/benchang1110)
|
57 |
+
- **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
|
58 |
+
- **Language(s) (NLP):** *Traditional Chinese*
|
59 |
+
|
60 |
## 中文
|
61 |
這個模型是一個多模態的語言模型,結合了 [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) 作為其視覺編碼器,並使用 [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) 作為語言模型。視覺投影器將這兩種模態結合在一起。
|
62 |
其架構與 [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma) 非常相似。
|
|
|
66 |
1) **單模態預訓練**
|
67 |
- 在這個階段,我利用了 [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) 的圖像編碼器,以及我們自己訓練的語言模型([Taiwan-tinyllama-v1.0-chat](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat))。
|
68 |
2) **特徵對齊**
|
69 |
+
- 我使用了10億個圖片和文本的配對來訓練圖像投影器 (visual projector),並使用 LoRA 來微調語言模型的權重。
|
70 |
3) **任務特定訓練**
|
71 |
+
- 對齊後的模型將進行進一步的訓練,針對短描述、詳細描述和簡單視覺問答等任務。我們將在數據集準備好後進行這一階段的訓練!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
+
- **創作者:** [benchang1110](https://huggingface.co/benchang1110)
|
75 |
+
- **模型類型:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
|
76 |
+
- **語言:** *Traditional Chinese*
|
77 |
+
|
78 |
---
|
79 |
|
80 |
## How to Get Started with the Model
|