--- library_name: transformers datasets: - benchang1110/TaiVision-pretrain-1M language: - zh pipeline_tag: image-text-to-text --- # Model Card for Model ID ![TaivisionLM]() ## Model Details ## English # TaiVisionLM: The First of Its Kind! 🚀 🌟 This is a small (only 1.2B parameters) visual language model on Hugging Face that responds to Traditional Chinese instructions given an image input! 🌟 ✨ Developed compatible with the Transformers library, TaiVisionLM is quick to load, fine-tune, and use for lightning-fast inferences without needing any external libraries! ⚡️ Ready to experience the Traditional Chinese visual language model? Let's go! 🖼️🤖 ## 繁體中文 # 臺視: 首創獨一無二的視覺語言模型!! 🚀 🌟 TaiVisionLM 是一個小型的視覺語言模型(僅有 12 億參數),可以根據圖像輸入來回覆繁體中文指令!🌟 ✨ TaiVisionLM 可以用 transformers 載入、微調和使用!⚡️ 準備好體驗"臺視"了嗎?讓我們開始吧!🖼️🤖 --- ### Model Description ## English This model is a multimodal large language model that combines [SigLIP](https://huggingface.co/google/siglip-base-patch16-224) as its vision encoder with [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) as its language model. The vision projector connects the two modalities together. Its architecture closely resembles [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma). Here's the summary of the development process: 1) **Unimodal pretraining** - In this stage, instead of pretraining both modalities from scratch, I leverage the image encoder from [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224) and the language model trained by ourselves (https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat). 2) **Feature Alignment** - I train the vision projector and language model using LoRA using 1B image-text pairs to align visual and textual features. 3) **Task Specific Training** - The aligned model undergoes further training for tasks such as short captioning, detailed captioning, and simple visual question answering. We will undergo this stage after the dataset is ready! - **Developed by:** [benchang1110](https://huggingface.co/benchang1110) - **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text) - **Language(s) (NLP):** *Traditional Chinese* ## 繁體中文 這個模型是一個多模態的語言模型,結合了 [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) 作為其視覺編碼器,並使用 [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) 作為語言模型。視覺投影器將這兩種模態結合在一起。 其架構與 [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma) 非常相似。 以下是開發過程的摘要: 1) **單模態預訓練** - 在這個階段,我利用了 [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) 的圖像編碼器,以及我們自己訓練的語言模型([Taiwan-tinyllama-v1.0-chat](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat))。 2) **特徵對齊** - 我使用了10億個圖片和文本的配對來訓練圖像投影器 (visual projector),並使用 LoRA 來微調語言模型的權重。 3) **任務特定訓練** - 對齊後的模型將進行進一步的訓練,針對短描述、詳細描述和簡單視覺問答等任務。我們將在數據集準備好後進行這一階段的訓練! - **創作者:** [benchang1110](https://huggingface.co/benchang1110) - **模型類型:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text) - **語言:** *Traditional Chinese* --- ## How to Get Started with the Model ## English In Transformers, you can load the model and do inference as follows: **IMPORTANT NOTE:** TaiVisionLM model is not yet integrated natively into the Transformers library. So you need to set ```trust_remote_code=True``` when loading the model. It will download the ```configuration_taivisionlm.py```, ```modeling_taivisionlm.py``` and ```processing_taivisionlm.py``` files from the repo. You can check out the content of these files under the *Files and Versions* tab and pin the specific versions if you have any concerns regarding malicious code. ```python from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig from PIL import Image import requests import torch config = AutoConfig.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True) processor = AutoProcessor.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True,torch_dtype=torch.float16,attn_implementation="sdpa").to('cuda') model.eval() url = "https://media.wired.com/photos/598e35fb99d76447c4eb1f28/master/pass/phonepicutres-TA.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") text = "描述圖片" inputs = processor(text=text,images=image, return_tensors="pt",padding=False).to('cuda') outputs = processor.tokenizer.decode(model.generate(**inputs,max_length=512)[0]) print(outputs) ``` ## 中文 利用 transformers,可以用下面程式碼進行推論: **重要通知:** 台視 (TaiVisionLM)還沒被整合進transformers,因此在下載模型時要使用 ```trust_remote_code=True```,下載模型將會使用``configuration_taivisionlm.py```、 ```modeling_taivisionlm.py``` 和 ```processing_taivisionlm.py``` 這三個檔案,若擔心有惡意程式碼,請先點選右方 *Files and Versions* 來查看程式碼內容。 ```python from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig from PIL import Image import requests import torch config = AutoConfig.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True) processor = AutoProcessor.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True,torch_dtype=torch.float16,attn_implementation="sdpa").to('cuda') model.eval() url = "https://media.wired.com/photos/598e35fb99d76447c4eb1f28/master/pass/phonepicutres-TA.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") text = "描述圖片" inputs = processor(text=text,images=image, return_tensors="pt",padding=False).to('cuda') outputs = processor.tokenizer.decode(model.generate(**inputs,max_length=512)[0]) print(outputs) ``` ### Training Procedure The following training hyperparameters are used in feature alignment and task specific training stages respectively: - **Feature Alignment** | Data size | Global Batch Size | Learning Rate | Epochs | Max Length | Weight Decay | |--------------|-------------------|---------------|--------|------------|--------------| | 1B | 16 | 5e-5 | 1 | 2048 | 1e-5 | We use full-parameter finetuning for the projector and apply LoRA to the language model. ### Compute Infrastructure - **Feature Alignment** - 1xV100(32GB), took approximately 16 GPU hours.