import logging from typing import List, Optional, Union from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput, is_valid_image from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import ( AddedToken, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy, ) from transformers.utils import TensorType from .configuration_taivisionlm import TaiVisionLMConfig logger = logging.getLogger(__name__) IMAGE_TOKEN = "" # Copied from transformers.models.idefics2.processing_idefics2.is_url def is_url(val) -> bool: return isinstance(val, str) and val.startswith("http") # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url def is_image_or_image_url(elem): return is_url(elem) or is_valid_image(elem) def _is_str_or_image(elem): return isinstance(elem, (str)) or is_image_or_image_url(elem) def build_string_from_input(prompt, bos_token, image_seq_len, image_token): """ Builds a string from the input prompt and image tokens. For example, for the call: build_string_from_input( prompt="Prefix str" bos_token="", image_seq_len=3, image_token="", ) The output will be: "Initial str" Args: prompt (`List[Union[str, ImageInput]]`): The input prompt. bos_token (`str`): The beginning of sentence token. image_seq_len (`int`): The length of the image sequence. image_token (`str`): The image token. """ return f"{image_token * image_seq_len}{bos_token}{prompt}\n" class TaiVisionProcessor(ProcessorMixin): r""" Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor. [`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "SiglipImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") def __init__( self, image_processor=None, tokenizer=None, chat_template=None, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") if not hasattr(image_processor, "image_seq_length"): raise ValueError("Image processor is missing an `image_seq_length` attribute.") self.image_seq_length = image_processor.image_seq_length image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) tokens_to_add = {"additional_special_tokens": [image_token]} tokenizer.add_special_tokens(tokens_to_add) self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) tokenizer.add_bos_token = False tokenizer.add_eos_token = False super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, tokenize_newline_separately: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, do_resize: bool = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 input_data_format: Optional[ Union[str, "ChannelDimension"] # noqa: F821 ] = None, resample: "PILImageResampling" = None, # noqa: F821 do_convert_rgb: bool = None, do_thumbnail: bool = None, do_align_long_axis: bool = None, do_rescale: bool = None, suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for the prefix and the suffix. For instance, ```python image = PIL_cow_image prompt = "answer en Where is the cow standing?" suffix = "on the beach" inputs = processor(text=prompt, images=image, suffix=suffix) ``` Here `inputs` will contain the `input_ids` and `token_type_ids` that follow ```python inputs["input_ids"][:, 256:] # tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]]) inputs["token_type_ids"][:, 256:] tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) ``` Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. tokenize_newline_separately (`bool`, defaults to `True`): Adds a separately tokenized '\n' at the end of the prompt. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. suffix (`str`, `List[str]`, `List[List[str]]`): The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md for more information. If your prompt is " What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench". Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` is provided, the `input_ids` will also contain the suffix input ids. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **labels** -- Labels compatible with training if `suffix` is not None """ return_token_type_ids = True if suffix is not None else False if images is None: raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") if text is None: logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model." ) text = "" if isinstance(text, List) and isinstance(images, List): if len(images) < len(text): raise ValueError( f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image." ) if _is_str_or_image(text): text = [text] elif isinstance(text, list) and _is_str_or_image(text[0]): pass if suffix is not None and _is_str_or_image(suffix): suffix = [suffix] if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, ) for prompt in text ] pixel_values = self.image_processor( images, do_resize=do_resize, do_normalize=do_normalize, return_tensors=return_tensors, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, data_format=data_format, resample=resample, do_convert_rgb=do_convert_rgb, )["pixel_values"] if max_length is not None: max_length += self.image_seq_length # max_length has to account for the image tokens inputs = self.tokenizer( input_strings, text_pair=suffix, return_tensors=return_tensors, padding=padding, max_length=max_length, truncation=truncation, return_token_type_ids=return_token_type_ids, ) return_data = {**inputs, "pixel_values": pixel_values} if return_token_type_ids: labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) return_data.update({"labels": labels}) return BatchFeature(data=return_data) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))