|
"""PyTorch TaiVisionLM""" |
|
import torch |
|
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM |
|
from transformers.utils import logging, add_start_docstrings, ModelOutput |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
from torch import nn |
|
from transformers.cache_utils import Cache, StaticCache |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
from .configuration_taivisionlm import TaiVisionLMConfig |
|
|
|
_CONFIG_FOR_DOC = "TaiVisionLMConfig" |
|
|
|
@dataclass |
|
class TaiVisionCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for TaiVision language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class TaiVisionMultiModalProjector(nn.Module): |
|
""" |
|
Multimodal projector that cast the image features into the same dimension space as the language model |
|
""" |
|
def __init__(self, config: TaiVisionLMConfig, dropout=0.1): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(config.vision_config.projection_dim, 4*config.vision_config.projection_dim, bias=True), |
|
nn.GELU(), |
|
nn.Linear(4*config.vision_config.projection_dim, config.hidden_size, bias=True), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.net(image_features).to(image_features.dtype) |
|
return hidden_states |
|
|
|
|
|
TRAVISIONLM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`TaiVisionLMConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
@add_start_docstrings( |
|
"The bare TaiVision Model outputting raw hidden-states without any specific head on top.", |
|
TRAVISIONLM_START_DOCSTRING, |
|
) |
|
class TaiVisionPreTrainedModel(PreTrainedModel): |
|
config_class = TaiVisionLMConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["TaiVisionMultiModalProjector"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
@add_start_docstrings( |
|
"""The TaiVisionLM model which consists of a vision backbone and a language model.""", |
|
TRAVISIONLM_START_DOCSTRING, |
|
) |
|
class TaiVisionForCausalLM(TaiVisionPreTrainedModel): |
|
def __init__(self, config: TaiVisionLMConfig): |
|
super(TaiVisionForCausalLM, self).__init__(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.pad_token_id = -1 if config.pad_token_id == None else config.pad_token_id |
|
self._attn_implementation = config._attn_implementation |
|
self.gradient_checkpointing = False |
|
|
|
self.vision_tower = AutoModel.from_config(config=config.vision_config) |
|
self.vision_projector = TaiVisionMultiModalProjector(config) |
|
|
|
language_model = AutoModelForCausalLM.from_config( |
|
config=config.text_config, attn_implementation=self._attn_implementation |
|
) |
|
if language_model._tied_weights_keys is not None: |
|
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] |
|
|
|
self.language_model = language_model |
|
self.post_init() |
|
|
|
def load_language_model(self, model_id = "benchang1110/Taiwan-tinyllama-v1.0-chat"): |
|
language_model = AutoModelForCausalLM.from_pretrained(model_id) |
|
if language_model.vocab_size != self.vocab_size: |
|
print("vocab size mismatch, resize the token embeddings for the pretained language model") |
|
language_model.resize_token_embeddings(self.vocab_size) |
|
self.language_model.load_state_dict(language_model.state_dict(),strict=True) |
|
|
|
def load_vision_model(self,model_id = "google/siglip-base-patch16-224"): |
|
import transformers |
|
vision_model = transformers.SiglipVisionModel.from_pretrained(model_id) |
|
self.vision_tower.load_state_dict(vision_model.state_dict(),strict=True) |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
|
|
|
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
|
|
def _update_causal_mask( |
|
self, attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training: bool = False |
|
): |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
dtype, device = inputs_embeds.dtype, inputs_embeds.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = inputs_embeds.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else cache_position[0] + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
|
|
if sequence_length != 1: |
|
if is_training: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
else: |
|
causal_mask = torch.zeros_like(causal_mask) |
|
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(inputs_embeds.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
if is_training: |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0 |
|
) |
|
return causal_mask |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TaiVisionCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration |
|
|
|
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf") |
|
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf") |
|
|
|
>>> prompt = "answer en Where is the cow standing?" |
|
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"answer en Where is the cow standing?\nbeach" |
|
```""" |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if pixel_values is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
is_training = token_type_ids is not None and labels is not None |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) + 1 |
|
|
|
|
|
if pixel_values is not None: |
|
image_outputs = self.vision_tower(pixel_values.to(inputs_embeds.dtype)) |
|
selected_image_feature = image_outputs.last_hidden_state |
|
image_features = self.vision_projector(selected_image_feature) |
|
image_features = image_features / (self.config.hidden_size**0.5) |
|
|
|
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds) |
|
if inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index) |
|
raise ValueError( |
|
f"Number of images does not match number of special image tokens in the input text. " |
|
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} " |
|
"tokens from image embeddings." |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
|
|
if labels is not None and self.pad_token_id in labels: |
|
logger.warning_once( |
|
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ", |
|
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.", |
|
) |
|
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training |
|
) |
|
|
|
outputs = self.language_model( |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
logits = outputs.logits |
|
logits = logits.float() |
|
loss = None |
|
if labels is not None: |
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
if attention_mask is not None: |
|
|
|
shift_attention_mask = attention_mask[..., 1:] |
|
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = shift_logits.contiguous() |
|
shift_labels = shift_labels.contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) |
|
flat_labels = shift_labels.view(-1).to(shift_logits.device) |
|
loss = loss_fct(flat_logits, flat_labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return TaiVisionCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
pixel_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
model_inputs["token_type_ids"] = token_type_ids |
|
|
|
|
|
if model_inputs.get("position_ids") is not None: |
|
model_inputs["position_ids"] += 1 |
|
|
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["pixel_values"] = pixel_values |
|
|
|
return model_inputs |