base
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96ec2d9da2852f4bedbf308e797103397451a82a66471c93b30789e3686a21f9
|
3 |
+
size 147102
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e88d0e700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e88d0e790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e88d0e820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e88d0e8b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5e88d0e940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5e88d0e9d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e88d0ea60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5e88d0eaf0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e88d0eb80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e88d0ec10>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e88d0eca0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5e88d07b70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670594649055662143,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1Dt7zcTkg9LQeMPSJGir4PsDO8vlXKPAAAAAAAAAAAGv8evrnKgD91ov++nWw8vwvgGr67g969AAAAAAAAAACz+Cs+jF2lPh3eUL73luy+tZYOPpn6h74AAAAAAAAAAEDmsj2NclE+Ym08vgT8p75SYji9xLkMvgAAAAAAAAAAFoaovmSysT4t9AE+Y2bGviZaK71cW4k9AAAAAAAAAADGL5S+ywagPoplGj6mfau+a2bMva5F5z0AAAAAAAAAACZtyz0ORdo+e7ISvmP2/L5XWMk8EpkyvgAAAAAAAAAAGg2bPabK3T5WhdY9Klvqvm0Wsj018um8AAAAAAAAAAAgNye+tKmHvOIuxTmKUMw3RYDuPWKBArkAAIA/AACAP23xIj6Dl0S8mdg1u41JWjlWrL29pvByOgAAgD8AAIA/wNJfPtXytD5WjY6+cQwIvydMkT3Yw2K+AAAAAAAAAAAa9cW99mR3uheYt7N6B8ysyRFHOJD7szMAAIA/AAAAAGZBVT03Uvc+sIhuPHt9Dr8OHJU9kr2SvQAAAAAAAAAAMzNkucPpY7qOVgy3Wj91sbsMOruSYSM2AACAPwAAgD/z6i8+NISTvMr3Czssf2q5IfQEvvt/bboAAIA/AACAP2ADJr5hjou84q4oOiui2DhO+fs9/N2ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvR3htCDpcUCUhpRSlIwBbJRL3IwBdJRHQJabAQarFOx1fZQoaAZoCWgPQwjJkc7ASEhwQJSGlFKUaBVL4GgWR0CWnE1zySV4dX2UKGgGaAloD0MIJv4o6kwucUCUhpRSlGgVS8JoFkdAlpy1jurp7nV9lChoBmgJaA9DCNQLPs0JGXFAlIaUUpRoFUvFaBZHQJacxSGahHt1fZQoaAZoCWgPQwhjfQOTWwRxQJSGlFKUaBVL5WgWR0CWnMYp2ECedX2UKGgGaAloD0MI12mkpbJ1ckCUhpRSlGgVS9toFkdAlp2OEh7mdXV9lChoBmgJaA9DCKMiTifZdW9AlIaUUpRoFUvEaBZHQJadpCAtnPF1fZQoaAZoCWgPQwhb0HtjiF9vQJSGlFKUaBVLtGgWR0CWng1hLGrCdX2UKGgGaAloD0MIbeF5qRh2ckCUhpRSlGgVS8BoFkdAlp8sf3evZHV9lChoBmgJaA9DCHr+tFEdQXFAlIaUUpRoFUvKaBZHQJafu8qWkad1fZQoaAZoCWgPQwjdDDfgc7VxQJSGlFKUaBVL0WgWR0CWn80dRzikdX2UKGgGaAloD0MIx2MGKqPdcECUhpRSlGgVS7hoFkdAlqALytmthnV9lChoBmgJaA9DCKD5nLvdEnFAlIaUUpRoFUu/aBZHQJagJECvHLl1fZQoaAZoCWgPQwg491ePu5ByQJSGlFKUaBVLw2gWR0CWoDIX0oSddX2UKGgGaAloD0MIGedvQiEHYkCUhpRSlGgVTegDaBZHQJagUOx0MgF1fZQoaAZoCWgPQwguILQevjhxQJSGlFKUaBVL92gWR0CWoT+KTB69dX2UKGgGaAloD0MI5q4l5IPgbUCUhpRSlGgVS8xoFkdAlqHJqdpZfXV9lChoBmgJaA9DCDxKJTyhB3JAlIaUUpRoFUvFaBZHQJah9yq+8Gt1fZQoaAZoCWgPQwgGR8mr80VwQJSGlFKUaBVLy2gWR0CWoildkauPdX2UKGgGaAloD0MI+P9xwsQbcUCUhpRSlGgVS9FoFkdAlqJO4smOVHV9lChoBmgJaA9DCGlwW1t4wXFAlIaUUpRoFUuyaBZHQJaiw6RyOrB1fZQoaAZoCWgPQwjwNQTH5ZlwQJSGlFKUaBVL02gWR0CWoxtrbg0kdX2UKGgGaAloD0MIsp/FUmRec0CUhpRSlGgVS7RoFkdAlqPXeSB9TnV9lChoBmgJaA9DCDkOvFrujkpAlIaUUpRoFUugaBZHQJakJrl/6O51fZQoaAZoCWgPQwgm/ijqDEJwQJSGlFKUaBVLsWgWR0CWpITAWSEEdX2UKGgGaAloD0MI1SXjGEmQcUCUhpRSlGgVTRMBaBZHQJak2ed07r91fZQoaAZoCWgPQwjvObAc4WNyQJSGlFKUaBVLx2gWR0CWpNrsByS3dX2UKGgGaAloD0MIqWvtfaqRcUCUhpRSlGgVS8toFkdAlqUApazNU3V9lChoBmgJaA9DCA04S8ky0nFAlIaUUpRoFUvIaBZHQJalVE8aGYd1fZQoaAZoCWgPQwgOEqJ8Ac1xQJSGlFKUaBVL0GgWR0CWpWntfG+9dX2UKGgGaAloD0MICTVDqui2cUCUhpRSlGgVS9NoFkdAlqcSZBsyi3V9lChoBmgJaA9DCAd40sKlkXJAlIaUUpRoFUvQaBZHQJanMJAt4A11fZQoaAZoCWgPQwgf8wGBTpdvQJSGlFKUaBVLxGgWR0CWpz/TLGJfdX2UKGgGaAloD0MIBFYOLbL8bUCUhpRSlGgVS8RoFkdAlqgZ6IFeOXV9lChoBmgJaA9DCO1imuleqXJAlIaUUpRoFUvuaBZHQJaoN73PAwh1fZQoaAZoCWgPQwiHbCBd7OVyQJSGlFKUaBVL3mgWR0CWqGw9q1w6dX2UKGgGaAloD0MISN3OvnKzb0CUhpRSlGgVS75oFkdAlqi4lt0mt3V9lChoBmgJaA9DCJrv4CeOXXJAlIaUUpRoFUvUaBZHQJapqBNEgGN1fZQoaAZoCWgPQwjh8IKI1JJwQJSGlFKUaBVLzGgWR0CWqdRoRIz4dX2UKGgGaAloD0MILnQlAhUjcECUhpRSlGgVTU8BaBZHQJap3E5yU9p1fZQoaAZoCWgPQwgeigJ9IkNvQJSGlFKUaBVLw2gWR0CWqhEX+ERKdX2UKGgGaAloD0MIEhJpG3+5b0CUhpRSlGgVS8NoFkdAlqpqT0QK8nV9lChoBmgJaA9DCBVSflJtN25AlIaUUpRoFUutaBZHQJar5eQdS2p1fZQoaAZoCWgPQwhV2uIan7hvQJSGlFKUaBVLuGgWR0CWrAs3yZrpdX2UKGgGaAloD0MICK7yBAJ7cUCUhpRSlGgVS9xoFkdAlq0/Ue+23XV9lChoBmgJaA9DCP+R6dDpQXJAlIaUUpRoFUvAaBZHQJatb6ab4Jx1fZQoaAZoCWgPQwhcqtIW1zZvQJSGlFKUaBVLt2gWR0CWrdvS+g14dX2UKGgGaAloD0MIuHcN+hLvckCUhpRSlGgVS9poFkdAlq6WS2Yv4HV9lChoBmgJaA9DCC/BqQ8k2nJAlIaUUpRoFUu/aBZHQJavaFXaJyh1fZQoaAZoCWgPQwhseHqlLGlvQJSGlFKUaBVL02gWR0CWr9TDO1OTdX2UKGgGaAloD0MIVpkprb8mZECUhpRSlGgVTegDaBZHQJawGWIGhVV1fZQoaAZoCWgPQwjtgVZgiLxxQJSGlFKUaBVL2WgWR0CWsDgaWHDadX2UKGgGaAloD0MIIsFUM+udcECUhpRSlGgVS81oFkdAlrCH0f5k9XV9lChoBmgJaA9DCM0iFFtBMnBAlIaUUpRoFUvDaBZHQJax0/bCaZx1fZQoaAZoCWgPQwg/dEF9S0x0QJSGlFKUaBVNFwFoFkdAlrJHoC+10HV9lChoBmgJaA9DCF1r71PViHJAlIaUUpRoFU1qAWgWR0CWsrw9q1w6dX2UKGgGaAloD0MITtTS3MoMckCUhpRSlGgVS/BoFkdAlrNK99MK1HV9lChoBmgJaA9DCBB0tKplrnBAlIaUUpRoFUutaBZHQJazycvugHx1fZQoaAZoCWgPQwj1FDlE3MRHQJSGlFKUaBVLoWgWR0CWtC3S8an8dX2UKGgGaAloD0MIT8k5sQcJcUCUhpRSlGgVS9ZoFkdAlrRMrd30PHV9lChoBmgJaA9DCDmX4qoyd3JAlIaUUpRoFUvxaBZHQJa0fncL0Bh1fZQoaAZoCWgPQwgJTn0g+U1yQJSGlFKUaBVLv2gWR0CWtgn8sMAndX2UKGgGaAloD0MIA3l2+dapcUCUhpRSlGgVS9FoFkdAlrY/qoqCpXV9lChoBmgJaA9DCLSOqiaIt3FAlIaUUpRoFUvSaBZHQJa4i0eEIxB1fZQoaAZoCWgPQwiJtI0/kaJzQJSGlFKUaBVNJgFoFkdAlrjabvw3HnV9lChoBmgJaA9DCMiVehbEBHBAlIaUUpRoFUuwaBZHQJa5KfPHDJl1fZQoaAZoCWgPQwhj1SDMLQJxQJSGlFKUaBVL4GgWR0CWuYied07sdX2UKGgGaAloD0MIkBK7tjcoc0CUhpRSlGgVS89oFkdAlrmhdUsFuHV9lChoBmgJaA9DCFWhgVg2gm9AlIaUUpRoFUu9aBZHQJa6Bvo/zJ91fZQoaAZoCWgPQwhkV1pGqm5wQJSGlFKUaBVLw2gWR0CWulakhzNmdX2UKGgGaAloD0MIwW9DjFfFb0CUhpRSlGgVTSUBaBZHQJa6xlum78N1fZQoaAZoCWgPQwicNuM0BDZxQJSGlFKUaBVL52gWR0CWu7PvKEFodX2UKGgGaAloD0MILH5TWGk2cECUhpRSlGgVS9poFkdAlr0KxcE/0XV9lChoBmgJaA9DCPKWqx8blHJAlIaUUpRoFUvgaBZHQJa9chmoR7J1fZQoaAZoCWgPQwhdh2pKMrlxQJSGlFKUaBVLqGgWR0CWvv2AoXsPdX2UKGgGaAloD0MIihwibs5LcUCUhpRSlGgVS8loFkdAlr+httQ9BHV9lChoBmgJaA9DCIdu9geKw3BAlIaUUpRoFUvIaBZHQJbAgmjTKDF1fZQoaAZoCWgPQwjzc0NT9ghxQJSGlFKUaBVL8GgWR0CWwK7ulXRxdX2UKGgGaAloD0MI4Ep2bASeckCUhpRSlGgVS9toFkdAlsGBrFfiP3V9lChoBmgJaA9DCHXpX5LKeXFAlIaUUpRoFUveaBZHQJbCHIRywOh1fZQoaAZoCWgPQwgdkIR9+/5xQJSGlFKUaBVNMwFoFkdAlsK4a1kUbnV9lChoBmgJaA9DCBrfF5eqhWJAlIaUUpRoFU3oA2gWR0CWwtP3ztkXdX2UKGgGaAloD0MIJCh+jDlWY0CUhpRSlGgVTegDaBZHQJbC1f0Eov11fZQoaAZoCWgPQwg8MevF0BhvQJSGlFKUaBVLuWgWR0CWwz/nW8RMdX2UKGgGaAloD0MIeEfGajNgcECUhpRSlGgVS+ZoFkdAlsNYHoouw3V9lChoBmgJaA9DCGtj7IQXJWdAlIaUUpRoFU3oA2gWR0CWw4eD3/PxdX2UKGgGaAloD0MI8iiV8MQ+ckCUhpRSlGgVTTIBaBZHQJbDkhQm/nJ1fZQoaAZoCWgPQwixTSoa64lvQJSGlFKUaBVLxWgWR0CWxSZ88cMmdX2UKGgGaAloD0MIqfsApLYuc0CUhpRSlGgVS9poFkdAlsZPcvduYXV9lChoBmgJaA9DCHxCdt7GQnNAlIaUUpRoFUu8aBZHQJbGUAaNuLt1fZQoaAZoCWgPQwjOGOYEbQBxQJSGlFKUaBVL02gWR0CWx8E+PikwdX2UKGgGaAloD0MI9fOmIpUxcUCUhpRSlGgVS6xoFkdAlsgkVafSQnV9lChoBmgJaA9DCBe5p6t7CHBAlIaUUpRoFUvEaBZHQJbIXp9qk/N1fZQoaAZoCWgPQwh716AvfXVzQJSGlFKUaBVLyWgWR0CWyKBZ6lchdX2UKGgGaAloD0MI4E237NADcECUhpRSlGgVS8VoFkdAlskMFQl8gXV9lChoBmgJaA9DCJrRj4bTKXFAlIaUUpRoFU0cAWgWR0CWyS6O5rgwdX2UKGgGaAloD0MIFhQGZRpzcUCUhpRSlGgVS8JoFkdAlsk5PIn0CnV9lChoBmgJaA9DCNJxNbKrM25AlIaUUpRoFUvhaBZHQJbJZGDtgKF1fZQoaAZoCWgPQwgAx549l2dyQJSGlFKUaBVL0GgWR0CWyZVDa4+bdX2UKGgGaAloD0MIOuenOM4LckCUhpRSlGgVTSoBaBZHQJbK4J/oaDR1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 320,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c72d54f96277873f721159c3cef6647b7e7b96b5077167cc553dd5149fe6d9a
|
3 |
+
size 87929
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:342c8134a32d1c3a47c265bb9e8d8ec9735e0b3ec7c97d1c231d7534b947d95b
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 274.79 +/- 13.79
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8669e405f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8669e40680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8669e40710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8669e407a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8669e40830>", "forward": "<function ActorCriticPolicy.forward at 0x7f8669e408c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8669e40950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8669e409e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8669e40a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8669e40b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8669e40b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f866a180180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668254735169169879, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABNmj0PfmQ/ZhCrusNdnL67KZw8EqUBvgAAAAAAAAAA0PTOPtQBSb09Z247ZIBNuUC7R73DqP44AACAPwAAgD8aLEM9CucduQ7RdLo5ROA1mjOUOrpLkDkAAIA/AACAP81CoL3ihu4+PXKEPToXmr6+AQU+YcyIPQAAAAAAAAAAM/6NPhLhizzgUbe7t/j3uZCIGD6xg6w5AACAPwAAgD8zZp499swPuuoxmzrNw8U043o4OXIJtLkAAIA/AACAP3O05L1Nyrg/LJQfv+ZmA77/ZYm9fnxJvgAAAAAAAAAA5lzIvftgBz9foYq9P8lnvo3kCr6Or6w8AAAAAAAAAAAmJje+vU1kPNO3TT1gvZu7FSgAvnaxmDwAAIA/AACAPwBlVr2PHny6xW+uOhFyHDkZRK+6thbPuQAAgD8AAIA/M6P9vOFawLhiBME7ssObtrdCuzpWx5m1AACAPwAAgD/Gy+s+m1uSPZOHiTx+RUa+u+Msvsw6Ab8AAAAAAACAP5rFhr4unZE7+jPgO/HEdLg87RW9xBO7OQAAgD8AAIA/E1sBP0Bi6T5uyDK8L91FvkMszbwbDe06AAAAAAAAAABAqE++pMhoPFd7HTvZn0S517j6vcWkRLoAAIA/AACAP336vz4cXsk+0jQJPWDgc74Rp5I98433uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYqBrX0C/NECUhpRSlIwBbJRNGQGMAXSUR0CC4YTmnwXqdX2UKGgGaAloD0MIHQQdrWpYWECUhpRSlGgVTegDaBZHQILnczKs+3Z1fZQoaAZoCWgPQwj2fw7z5VheQJSGlFKUaBVN6ANoFkdAgv5CY9gWrXV9lChoBmgJaA9DCA1wQbYs6llAlIaUUpRoFU3oA2gWR0CC/q9du5z6dX2UKGgGaAloD0MIavtXVpriYECUhpRSlGgVTegDaBZHQIMD/i5uqFR1fZQoaAZoCWgPQwiCxHb3AMxaQJSGlFKUaBVN6ANoFkdAgwRBDgIhQnV9lChoBmgJaA9DCOkq3V3nLGJAlIaUUpRoFU3oA2gWR0CDDv8uSOindX2UKGgGaAloD0MIRwN4CyTVYkCUhpRSlGgVTegDaBZHQIMTp3A2ycF1fZQoaAZoCWgPQwidnndjwQ1hQJSGlFKUaBVN6ANoFkdAgx+lHjIaLnV9lChoBmgJaA9DCFT9SufDoy9AlIaUUpRoFU0WAWgWR0CDIslSjxkNdX2UKGgGaAloD0MI9RJjmf4KYUCUhpRSlGgVTegDaBZHQIMoVkrf+CN1fZQoaAZoCWgPQwiel4qNeX9gQJSGlFKUaBVN6ANoFkdAgy10Nz8xbnV9lChoBmgJaA9DCGraxTTTRFpAlIaUUpRoFU3oA2gWR0CDLZ2PDHfedX2UKGgGaAloD0MIKXXJOMbkYECUhpRSlGgVTegDaBZHQIMupdKNAC51fZQoaAZoCWgPQwhAw5s1+GphQJSGlFKUaBVN6ANoFkdAg0FFPrOZ9nV9lChoBmgJaA9DCPkSKji8cCfAlIaUUpRoFUvKaBZHQINFWLWI42l1fZQoaAZoCWgPQwjhC5OpAsFhQJSGlFKUaBVN6ANoFkdAg083NC7btnV9lChoBmgJaA9DCDqvsUtU72FAlIaUUpRoFU3oA2gWR0CDU533YcvNdX2UKGgGaAloD0MIud+hKNA8XECUhpRSlGgVTegDaBZHQIOIMP8Q7Ld1fZQoaAZoCWgPQwjzVIfcDHRgQJSGlFKUaBVN6ANoFkdAg437Q1JlKHV9lChoBmgJaA9DCOcXJegv4l5AlIaUUpRoFU3oA2gWR0CDpScvM8oydX2UKGgGaAloD0MIVFInoImpV0CUhpRSlGgVTegDaBZHQIOq2gte2NN1fZQoaAZoCWgPQwhPWU3XE2JiQJSGlFKUaBVN6ANoFkdAg6smknCwbHV9lChoBmgJaA9DCB5QNuUK8lxAlIaUUpRoFU3oA2gWR0CDtjxbSqlxdX2UKGgGaAloD0MIEAh0Jm0HYUCUhpRSlGgVTegDaBZHQIO7JXjlxOt1fZQoaAZoCWgPQwhgPIOGfoJhQJSGlFKUaBVN6ANoFkdAg8eW9US7G3V9lChoBmgJaA9DCO58PzXeAGdAlIaUUpRoFU3oA2gWR0CDywEGqxTsdX2UKGgGaAloD0MIZaVJKejwYkCUhpRSlGgVTegDaBZHQIPQ13GGVRl1fZQoaAZoCWgPQwjxvFRsTGxhQJSGlFKUaBVN6ANoFkdAg9ZqBmPHUHV9lChoBmgJaA9DCHqqQ26GgVtAlIaUUpRoFU3oA2gWR0CD17U+cH4XdX2UKGgGaAloD0MI6pJxjGRFSkCUhpRSlGgVTToBaBZHQIPhlbTtsvZ1fZQoaAZoCWgPQwhZ94+F6ND/v5SGlFKUaBVNGAFoFkdAg+HT7l7tzHV9lChoBmgJaA9DCGXFcHUAA15AlIaUUpRoFU3oA2gWR0CD8VhVENONdX2UKGgGaAloD0MI0A64rphRM0CUhpRSlGgVS+xoFkdAg/ZiOWBz3nV9lChoBmgJaA9DCJEPejarpFhAlIaUUpRoFU3oA2gWR0CD97wyZa3adX2UKGgGaAloD0MI1gCloUbvZ0CUhpRSlGgVTVQBaBZHQIP9wyM1jy51fZQoaAZoCWgPQwhrZcIv9SZbQJSGlFKUaBVN6ANoFkdAhAZA6uGKynV9lChoBmgJaA9DCCnpYWh1cFdAlIaUUpRoFU3oA2gWR0CECsM0gr6MdX2UKGgGaAloD0MIpREz+zzyV0CUhpRSlGgVTegDaBZHQIQ/utU4rBl1fZQoaAZoCWgPQwh7Lei9MYQOQJSGlFKUaBVNWgFoFkdAhD/EaESM+HV9lChoBmgJaA9DCGLaN/dXc1lAlIaUUpRoFU3oA2gWR0CERYY0l7dBdX2UKGgGaAloD0MIiSZQxCIkWUCUhpRSlGgVTegDaBZHQIRdsghbGFV1fZQoaAZoCWgPQwh15h4SvkxcQJSGlFKUaBVN6ANoFkdAhGRD7ZWaMXV9lChoBmgJaA9DCJEr9SwIBmBAlIaUUpRoFU3oA2gWR0CEZKUWVNYbdX2UKGgGaAloD0MIe/gyUYRkEUCUhpRSlGgVTVgBaBZHQIR/oEGJN0x1fZQoaAZoCWgPQwgZrg6AuJtWQJSGlFKUaBVN6ANoFkdAhJFRcmjTKHV9lChoBmgJaA9DCOs2qP3WcFxAlIaUUpRoFU3oA2gWR0CEnj9Brvb5dX2UKGgGaAloD0MIfXcrS3TlZUCUhpRSlGgVTegDaBZHQISfz0163RZ1fZQoaAZoCWgPQwjFru3tlolfQJSGlFKUaBVN6ANoFkdAhKtHHWBjF3V9lChoBmgJaA9DCA3GiESh1VxAlIaUUpRoFU3oA2gWR0CEuL04BFNMdX2UKGgGaAloD0MIFw6EZAFmW0CUhpRSlGgVTegDaBZHQIS84cJdB0J1fZQoaAZoCWgPQwgAi/z6IelWQJSGlFKUaBVN6ANoFkdAhL3x6Ww/xHV9lChoBmgJaA9DCG8Sg8DK6GBAlIaUUpRoFU3oA2gWR0CEwl2q1gIAdX2UKGgGaAloD0MIUtMuphmTY0CUhpRSlGgVTegDaBZHQITIS9M9KVZ1fZQoaAZoCWgPQwg826M33N5YQJSGlFKUaBVN6ANoFkdAhMx6unuRcXV9lChoBmgJaA9DCPloccawMmBAlIaUUpRoFU3oA2gWR0CFAVQID5j6dX2UKGgGaAloD0MIVMcqpeduYECUhpRSlGgVTegDaBZHQIUBXMUypJh1fZQoaAZoCWgPQwiHokCfyMtCwJSGlFKUaBVNHAFoFkdAhQdYIBzV+nV9lChoBmgJaA9DCGcpWU5CfWFAlIaUUpRoFU3oA2gWR0CFHegEEC/5dX2UKGgGaAloD0MIC3xFt16jWECUhpRSlGgVTegDaBZHQIUj1bqyGBZ1fZQoaAZoCWgPQwh/944aE4leQJSGlFKUaBVN6ANoFkdAhSQerELpinV9lChoBmgJaA9DCJJZvcPtu2BAlIaUUpRoFU3oA2gWR0CFN6kKNQ0odX2UKGgGaAloD0MIY+5aQj78V0CUhpRSlGgVTegDaBZHQIVHbpFCswN1fZQoaAZoCWgPQwj0b5f9unJfQJSGlFKUaBVN6ANoFkdAhVMbLMcIaHV9lChoBmgJaA9DCA360tuf71tAlIaUUpRoFU3oA2gWR0CFVItyPuG9dX2UKGgGaAloD0MI2EroLgngYkCUhpRSlGgVTegDaBZHQIVgl9Dx9Xt1fZQoaAZoCWgPQwgWFtwPeGAgQJSGlFKUaBVNGAFoFkdAhWMDX4CZGHV9lChoBmgJaA9DCGed8X1x219AlIaUUpRoFU3oA2gWR0CFcFQbdadMdX2UKGgGaAloD0MIxXO2gNBlVUCUhpRSlGgVTegDaBZHQIV2SrzXjEN1fZQoaAZoCWgPQwjDLLRzGgpkQJSGlFKUaBVN6ANoFkdAhXup4rz5GnV9lChoBmgJaA9DCNl4sMVuMFZAlIaUUpRoFU3oA2gWR0CFgLapPykLdX2UKGgGaAloD0MIKuW1ErqGVUCUhpRSlGgVTegDaBZHQIWEx88cMmZ1fZQoaAZoCWgPQwjFHW/yW0woQJSGlFKUaBVNMwFoFkdAhYUCvX9R8HV9lChoBmgJaA9DCKAWg4dp/w1AlIaUUpRoFU0hAWgWR0CFjIXBP9DQdX2UKGgGaAloD0MI8KSFyyqQWkCUhpRSlGgVTegDaBZHQIW4PReC04R1fZQoaAZoCWgPQwh5ymq6Hr5hQJSGlFKUaBVN6ANoFkdAhbhB0IToMnV9lChoBmgJaA9DCLFppRBIBWBAlIaUUpRoFU3oA2gWR0CFvb3PAwfydX2UKGgGaAloD0MIxAsiUtOGI8CUhpRSlGgVTWsBaBZHQIXLUsUZeiV1fZQoaAZoCWgPQwhNZryt9EoUQJSGlFKUaBVNNAFoFkdAhc6coQWepXV9lChoBmgJaA9DCIV5jzNNuCnAlIaUUpRoFU1DAWgWR0CF0LJzT4L1dX2UKGgGaAloD0MIEodsIF2qVkCUhpRSlGgVTegDaBZHQIXRLS9du511fZQoaAZoCWgPQwgCZr6DnyA2QJSGlFKUaBVNAgFoFkdAhdFOQIUrTnV9lChoBmgJaA9DCFGGqphKjzxAlIaUUpRoFUv2aBZHQIXUo371qWV1fZQoaAZoCWgPQwjr5XeazPBdQJSGlFKUaBVN6ANoFkdAhdWm7Bfrr3V9lChoBmgJaA9DCO7uAboveV1AlIaUUpRoFU3oA2gWR0CF1d6qKgqWdX2UKGgGaAloD0MINjy9UpZpRcCUhpRSlGgVS+5oFkdAhdiXTuv2XnV9lChoBmgJaA9DCFIpdjQOPSfAlIaUUpRoFU0aAWgWR0CF6seEIw/QdX2UKGgGaAloD0MInglNEkt3XECUhpRSlGgVTegDaBZHQIXscHhS9/V1fZQoaAZoCWgPQwjTFAFO7ytcQJSGlFKUaBVN6ANoFkdAhfYvmPo3aXV9lChoBmgJaA9DCEaaeAd4ijHAlIaUUpRoFU1rAWgWR0CF9pDKoybhdX2UKGgGaAloD0MILev+sRDfW0CUhpRSlGgVTegDaBZHQIYAsr7O3Uh1fZQoaAZoCWgPQwhczM8NTUdFwJSGlFKUaBVLtmgWR0CGAPfD1oQGdX2UKGgGaAloD0MIa5vicVEOaECUhpRSlGgVTR8CaBZHQIYHcPhAGB51fZQoaAZoCWgPQwhEGD+Ne6ZjQJSGlFKUaBVN6ANoFkdAhgrIKlYU4HV9lChoBmgJaA9DCH8SnzvBuVpAlIaUUpRoFU3oA2gWR0CGDpNW2gFpdX2UKGgGaAloD0MIprkVwmqsLcCUhpRSlGgVTTMBaBZHQIYRHQWvbGp1fZQoaAZoCWgPQwiIn/8evDYVQJSGlFKUaBVNBAFoFkdAhhUv0qYqonV9lChoBmgJaA9DCO2DLAsmtlhAlIaUUpRoFU3oA2gWR0CGFxzRQaaTdX2UKGgGaAloD0MI5UF6ihziLUCUhpRSlGgVS/RoFkdAhhxXj+717XV9lChoBmgJaA9DCCfeAZ60IBfAlIaUUpRoFUvjaBZHQIYjZvR7Z391ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e88d0e700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e88d0e790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e88d0e820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e88d0e8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e88d0e940>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e88d0e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e88d0ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e88d0eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e88d0eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e88d0ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e88d0eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5e88d07b70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670594649055662143, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1Dt7zcTkg9LQeMPSJGir4PsDO8vlXKPAAAAAAAAAAAGv8evrnKgD91ov++nWw8vwvgGr67g969AAAAAAAAAACz+Cs+jF2lPh3eUL73luy+tZYOPpn6h74AAAAAAAAAAEDmsj2NclE+Ym08vgT8p75SYji9xLkMvgAAAAAAAAAAFoaovmSysT4t9AE+Y2bGviZaK71cW4k9AAAAAAAAAADGL5S+ywagPoplGj6mfau+a2bMva5F5z0AAAAAAAAAACZtyz0ORdo+e7ISvmP2/L5XWMk8EpkyvgAAAAAAAAAAGg2bPabK3T5WhdY9Klvqvm0Wsj018um8AAAAAAAAAAAgNye+tKmHvOIuxTmKUMw3RYDuPWKBArkAAIA/AACAP23xIj6Dl0S8mdg1u41JWjlWrL29pvByOgAAgD8AAIA/wNJfPtXytD5WjY6+cQwIvydMkT3Yw2K+AAAAAAAAAAAa9cW99mR3uheYt7N6B8ysyRFHOJD7szMAAIA/AAAAAGZBVT03Uvc+sIhuPHt9Dr8OHJU9kr2SvQAAAAAAAAAAMzNkucPpY7qOVgy3Wj91sbsMOruSYSM2AACAPwAAgD/z6i8+NISTvMr3Czssf2q5IfQEvvt/bboAAIA/AACAP2ADJr5hjou84q4oOiui2DhO+fs9/N2ruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvR3htCDpcUCUhpRSlIwBbJRL3IwBdJRHQJabAQarFOx1fZQoaAZoCWgPQwjJkc7ASEhwQJSGlFKUaBVL4GgWR0CWnE1zySV4dX2UKGgGaAloD0MIJv4o6kwucUCUhpRSlGgVS8JoFkdAlpy1jurp7nV9lChoBmgJaA9DCNQLPs0JGXFAlIaUUpRoFUvFaBZHQJacxSGahHt1fZQoaAZoCWgPQwhjfQOTWwRxQJSGlFKUaBVL5WgWR0CWnMYp2ECedX2UKGgGaAloD0MI12mkpbJ1ckCUhpRSlGgVS9toFkdAlp2OEh7mdXV9lChoBmgJaA9DCKMiTifZdW9AlIaUUpRoFUvEaBZHQJadpCAtnPF1fZQoaAZoCWgPQwhb0HtjiF9vQJSGlFKUaBVLtGgWR0CWng1hLGrCdX2UKGgGaAloD0MIbeF5qRh2ckCUhpRSlGgVS8BoFkdAlp8sf3evZHV9lChoBmgJaA9DCHr+tFEdQXFAlIaUUpRoFUvKaBZHQJafu8qWkad1fZQoaAZoCWgPQwjdDDfgc7VxQJSGlFKUaBVL0WgWR0CWn80dRzikdX2UKGgGaAloD0MIx2MGKqPdcECUhpRSlGgVS7hoFkdAlqALytmthnV9lChoBmgJaA9DCKD5nLvdEnFAlIaUUpRoFUu/aBZHQJagJECvHLl1fZQoaAZoCWgPQwg491ePu5ByQJSGlFKUaBVLw2gWR0CWoDIX0oSddX2UKGgGaAloD0MIGedvQiEHYkCUhpRSlGgVTegDaBZHQJagUOx0MgF1fZQoaAZoCWgPQwguILQevjhxQJSGlFKUaBVL92gWR0CWoT+KTB69dX2UKGgGaAloD0MI5q4l5IPgbUCUhpRSlGgVS8xoFkdAlqHJqdpZfXV9lChoBmgJaA9DCDxKJTyhB3JAlIaUUpRoFUvFaBZHQJah9yq+8Gt1fZQoaAZoCWgPQwgGR8mr80VwQJSGlFKUaBVLy2gWR0CWoildkauPdX2UKGgGaAloD0MI+P9xwsQbcUCUhpRSlGgVS9FoFkdAlqJO4smOVHV9lChoBmgJaA9DCGlwW1t4wXFAlIaUUpRoFUuyaBZHQJaiw6RyOrB1fZQoaAZoCWgPQwjwNQTH5ZlwQJSGlFKUaBVL02gWR0CWoxtrbg0kdX2UKGgGaAloD0MIsp/FUmRec0CUhpRSlGgVS7RoFkdAlqPXeSB9TnV9lChoBmgJaA9DCDkOvFrujkpAlIaUUpRoFUugaBZHQJakJrl/6O51fZQoaAZoCWgPQwgm/ijqDEJwQJSGlFKUaBVLsWgWR0CWpITAWSEEdX2UKGgGaAloD0MI1SXjGEmQcUCUhpRSlGgVTRMBaBZHQJak2ed07r91fZQoaAZoCWgPQwjvObAc4WNyQJSGlFKUaBVLx2gWR0CWpNrsByS3dX2UKGgGaAloD0MIqWvtfaqRcUCUhpRSlGgVS8toFkdAlqUApazNU3V9lChoBmgJaA9DCA04S8ky0nFAlIaUUpRoFUvIaBZHQJalVE8aGYd1fZQoaAZoCWgPQwgOEqJ8Ac1xQJSGlFKUaBVL0GgWR0CWpWntfG+9dX2UKGgGaAloD0MICTVDqui2cUCUhpRSlGgVS9NoFkdAlqcSZBsyi3V9lChoBmgJaA9DCAd40sKlkXJAlIaUUpRoFUvQaBZHQJanMJAt4A11fZQoaAZoCWgPQwgf8wGBTpdvQJSGlFKUaBVLxGgWR0CWpz/TLGJfdX2UKGgGaAloD0MIBFYOLbL8bUCUhpRSlGgVS8RoFkdAlqgZ6IFeOXV9lChoBmgJaA9DCO1imuleqXJAlIaUUpRoFUvuaBZHQJaoN73PAwh1fZQoaAZoCWgPQwiHbCBd7OVyQJSGlFKUaBVL3mgWR0CWqGw9q1w6dX2UKGgGaAloD0MISN3OvnKzb0CUhpRSlGgVS75oFkdAlqi4lt0mt3V9lChoBmgJaA9DCJrv4CeOXXJAlIaUUpRoFUvUaBZHQJapqBNEgGN1fZQoaAZoCWgPQwjh8IKI1JJwQJSGlFKUaBVLzGgWR0CWqdRoRIz4dX2UKGgGaAloD0MILnQlAhUjcECUhpRSlGgVTU8BaBZHQJap3E5yU9p1fZQoaAZoCWgPQwgeigJ9IkNvQJSGlFKUaBVLw2gWR0CWqhEX+ERKdX2UKGgGaAloD0MIEhJpG3+5b0CUhpRSlGgVS8NoFkdAlqpqT0QK8nV9lChoBmgJaA9DCBVSflJtN25AlIaUUpRoFUutaBZHQJar5eQdS2p1fZQoaAZoCWgPQwhV2uIan7hvQJSGlFKUaBVLuGgWR0CWrAs3yZrpdX2UKGgGaAloD0MICK7yBAJ7cUCUhpRSlGgVS9xoFkdAlq0/Ue+23XV9lChoBmgJaA9DCP+R6dDpQXJAlIaUUpRoFUvAaBZHQJatb6ab4Jx1fZQoaAZoCWgPQwhcqtIW1zZvQJSGlFKUaBVLt2gWR0CWrdvS+g14dX2UKGgGaAloD0MIuHcN+hLvckCUhpRSlGgVS9poFkdAlq6WS2Yv4HV9lChoBmgJaA9DCC/BqQ8k2nJAlIaUUpRoFUu/aBZHQJavaFXaJyh1fZQoaAZoCWgPQwhseHqlLGlvQJSGlFKUaBVL02gWR0CWr9TDO1OTdX2UKGgGaAloD0MIVpkprb8mZECUhpRSlGgVTegDaBZHQJawGWIGhVV1fZQoaAZoCWgPQwjtgVZgiLxxQJSGlFKUaBVL2WgWR0CWsDgaWHDadX2UKGgGaAloD0MIIsFUM+udcECUhpRSlGgVS81oFkdAlrCH0f5k9XV9lChoBmgJaA9DCM0iFFtBMnBAlIaUUpRoFUvDaBZHQJax0/bCaZx1fZQoaAZoCWgPQwg/dEF9S0x0QJSGlFKUaBVNFwFoFkdAlrJHoC+10HV9lChoBmgJaA9DCF1r71PViHJAlIaUUpRoFU1qAWgWR0CWsrw9q1w6dX2UKGgGaAloD0MITtTS3MoMckCUhpRSlGgVS/BoFkdAlrNK99MK1HV9lChoBmgJaA9DCBB0tKplrnBAlIaUUpRoFUutaBZHQJazycvugHx1fZQoaAZoCWgPQwj1FDlE3MRHQJSGlFKUaBVLoWgWR0CWtC3S8an8dX2UKGgGaAloD0MIT8k5sQcJcUCUhpRSlGgVS9ZoFkdAlrRMrd30PHV9lChoBmgJaA9DCDmX4qoyd3JAlIaUUpRoFUvxaBZHQJa0fncL0Bh1fZQoaAZoCWgPQwgJTn0g+U1yQJSGlFKUaBVLv2gWR0CWtgn8sMAndX2UKGgGaAloD0MIA3l2+dapcUCUhpRSlGgVS9FoFkdAlrY/qoqCpXV9lChoBmgJaA9DCLSOqiaIt3FAlIaUUpRoFUvSaBZHQJa4i0eEIxB1fZQoaAZoCWgPQwiJtI0/kaJzQJSGlFKUaBVNJgFoFkdAlrjabvw3HnV9lChoBmgJaA9DCMiVehbEBHBAlIaUUpRoFUuwaBZHQJa5KfPHDJl1fZQoaAZoCWgPQwhj1SDMLQJxQJSGlFKUaBVL4GgWR0CWuYied07sdX2UKGgGaAloD0MIkBK7tjcoc0CUhpRSlGgVS89oFkdAlrmhdUsFuHV9lChoBmgJaA9DCFWhgVg2gm9AlIaUUpRoFUu9aBZHQJa6Bvo/zJ91fZQoaAZoCWgPQwhkV1pGqm5wQJSGlFKUaBVLw2gWR0CWulakhzNmdX2UKGgGaAloD0MIwW9DjFfFb0CUhpRSlGgVTSUBaBZHQJa6xlum78N1fZQoaAZoCWgPQwicNuM0BDZxQJSGlFKUaBVL52gWR0CWu7PvKEFodX2UKGgGaAloD0MILH5TWGk2cECUhpRSlGgVS9poFkdAlr0KxcE/0XV9lChoBmgJaA9DCPKWqx8blHJAlIaUUpRoFUvgaBZHQJa9chmoR7J1fZQoaAZoCWgPQwhdh2pKMrlxQJSGlFKUaBVLqGgWR0CWvv2AoXsPdX2UKGgGaAloD0MIihwibs5LcUCUhpRSlGgVS8loFkdAlr+httQ9BHV9lChoBmgJaA9DCIdu9geKw3BAlIaUUpRoFUvIaBZHQJbAgmjTKDF1fZQoaAZoCWgPQwjzc0NT9ghxQJSGlFKUaBVL8GgWR0CWwK7ulXRxdX2UKGgGaAloD0MI4Ep2bASeckCUhpRSlGgVS9toFkdAlsGBrFfiP3V9lChoBmgJaA9DCHXpX5LKeXFAlIaUUpRoFUveaBZHQJbCHIRywOh1fZQoaAZoCWgPQwgdkIR9+/5xQJSGlFKUaBVNMwFoFkdAlsK4a1kUbnV9lChoBmgJaA9DCBrfF5eqhWJAlIaUUpRoFU3oA2gWR0CWwtP3ztkXdX2UKGgGaAloD0MIJCh+jDlWY0CUhpRSlGgVTegDaBZHQJbC1f0Eov11fZQoaAZoCWgPQwg8MevF0BhvQJSGlFKUaBVLuWgWR0CWwz/nW8RMdX2UKGgGaAloD0MIeEfGajNgcECUhpRSlGgVS+ZoFkdAlsNYHoouw3V9lChoBmgJaA9DCGtj7IQXJWdAlIaUUpRoFU3oA2gWR0CWw4eD3/PxdX2UKGgGaAloD0MI8iiV8MQ+ckCUhpRSlGgVTTIBaBZHQJbDkhQm/nJ1fZQoaAZoCWgPQwixTSoa64lvQJSGlFKUaBVLxWgWR0CWxSZ88cMmdX2UKGgGaAloD0MIqfsApLYuc0CUhpRSlGgVS9poFkdAlsZPcvduYXV9lChoBmgJaA9DCHxCdt7GQnNAlIaUUpRoFUu8aBZHQJbGUAaNuLt1fZQoaAZoCWgPQwjOGOYEbQBxQJSGlFKUaBVL02gWR0CWx8E+PikwdX2UKGgGaAloD0MI9fOmIpUxcUCUhpRSlGgVS6xoFkdAlsgkVafSQnV9lChoBmgJaA9DCBe5p6t7CHBAlIaUUpRoFUvEaBZHQJbIXp9qk/N1fZQoaAZoCWgPQwh716AvfXVzQJSGlFKUaBVLyWgWR0CWyKBZ6lchdX2UKGgGaAloD0MI4E237NADcECUhpRSlGgVS8VoFkdAlskMFQl8gXV9lChoBmgJaA9DCJrRj4bTKXFAlIaUUpRoFU0cAWgWR0CWyS6O5rgwdX2UKGgGaAloD0MIFhQGZRpzcUCUhpRSlGgVS8JoFkdAlsk5PIn0CnV9lChoBmgJaA9DCNJxNbKrM25AlIaUUpRoFUvhaBZHQJbJZGDtgKF1fZQoaAZoCWgPQwgAx549l2dyQJSGlFKUaBVL0GgWR0CWyZVDa4+bdX2UKGgGaAloD0MIOuenOM4LckCUhpRSlGgVTSoBaBZHQJbK4J/oaDR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 274.7859709002079, "std_reward": 13.78635079718135, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T14:37:33.534186"}
|