File size: 1,686 Bytes
34f2a94
c72e140
7784ed2
 
 
a19f7e7
 
25e2e23
34f2a94
7784ed2
5d6f6a7
 
18f3ecd
bb65fbe
5d6f6a7
7784ed2
 
6c68fba
cf1c9d7
7784ed2
 
cf1c9d7
7784ed2
 
 
 
 
 
 
6c68fba
7784ed2
 
 
32b5aeb
7784ed2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: cc-by-nc-4.0
language:
- ru
library_name: nemo
tags:
- text-to-speech
- tts
---

### How to use

See example of inference pipeline for Russian TTS (G2P + FastPitch + HifiGAN) in this [notebook](https://github.com/bene-ges/nemo_compatible/blob/main/notebooks/Russian_TTS_with_IPA_G2P_FastPitch_and_HifiGAN.ipynb).
Or use this [bash-script](https://github.com/bene-ges/nemo_compatible/blob/main/scripts/tts/ru_ipa_fastpitch_hifigan/test.sh).

### Input

This model is indended to be used in a G2P + FastPitch + HifiGAN pipeline (see above).
If run independently, it expects text converted to IPA-like transcriptions. See this [g2p model](https://huggingface.co/bene-ges/ru_g2p_ipa_bert_large) for conversion of plain Russian words to phonemes, or this new [IPA-compatible G2P tool](https://github.com/omogr/omogre) that can handle ambiguitity on sentence level.
If you feed plain text directly, it will work, but quality will be low.


### Output

This model generates mel spectrograms.

## Training

The NeMo toolkit [1] was used for training the model for 1000+ epochs.
Full training script is [here](https://github.com/bene-ges/nemo_compatible/blob/main/scripts/tts/ru_ipa_fastpitch_hifigan/train.sh)

### Datasets

This model is trained on [RUSLAN](https://ruslan-corpus.github.io/) [2] corpus (single speaker, male voice) sampled at 22050Hz.


## References
- [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
- [2] Gabdrakhmanov L., Garaev R., Razinkov E. (2019) RUSLAN: Russian Spoken Language Corpus for Speech Synthesis. In: Salah A., Karpov A., Potapova R. (eds) Speech and Computer. SPECOM 2019. Lecture Notes in Computer Science, vol 11658. Springer, Cham