Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 176.12 +/- 31.40
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe16f603680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe16f603710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe16f6037a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe16f603830>", "_build": "<function ActorCriticPolicy._build at 0x7fe16f6038c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe16f603950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe16f6039e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe16f603a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe16f603b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe16f603b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe16f603c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe16f655600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651702563.70913, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEb0BL6ElyY+Jtn7u1elGr65BbW9etnAPAAAAAAAAAAAzQDLu1wTKbrTiOM6fPFpNb/wkLuQtAS6AACAPwAAgD8z3p+8jwIOuKiFdLyx3yU98T4Tuq60a7wAAIA/AACAPxrKdj24qZ8/y2fJPhSBzb6hE0m9syMhvQAAAAAAAAAAWgXlPTtM1T4DneS8Cw5MvlTuYr2wdXU9AAAAAAAAAADNGL08SOuPukQRDTlmc082wjdFu7PWIbgAAIA/AACAP93u+D4tQd29kgyOPHKjGb3L57Q8Og19vQAAAAAAAAAA5l8pP+yACr6ouXU8E8F4Omtx7D1W6Ag8AACAPwAAgD+mCtK9yFeIvC5CMj7FW648u7n7Pc46ir0AAIA/AAAAAJpJ3DwsfnM+8P1uPcelP77BLpQ9j1wTPQAAAAAAAAAAHSGXPkDXhr2y95s7Hrheul0e5L5sABq7AACAPwAAgD871Zy+Ax53vMqQsbseIIy5udy1Pf5EazcAAIA/AACAP9zDBr93ufq9szSCvjFzdLwIry8+m+f9vAAAAAAAAAAADTWvPQo4Xbug7Qm9Nkc/PJ2KCL3QCt48AAAAAAAAAADAM7a911Nwufu6RrtbjLa2bEaPOyOUJjYAAIA/AACAP5rHpLz2dEa6nUTUOfOzjTSDw7G7tVX1uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr+lBQSkuM0CUhpRSlIwBbJRLs4wBdJRHQImQKXt0FKV1fZQoaAZoCWgPQwjTwfo/h6tPwJSGlFKUaBVLy2gWR0CJz/1FH8TBdX2UKGgGaAloD0MIlUVhF0XqWECUhpRSlGgVTegDaBZHQInbuSbH6uZ1fZQoaAZoCWgPQwhmvK302jhawJSGlFKUaBVLxWgWR0CJ6m4//vORdX2UKGgGaAloD0MIoHB2a5niWUCUhpRSlGgVTegDaBZHQInxChvitJZ1fZQoaAZoCWgPQwgFMjuLXslgQJSGlFKUaBVN6ANoFkdAifOhomG/OHV9lChoBmgJaA9DCPCjGvZ7x1BAlIaUUpRoFU3oA2gWR0CJ9PjgAIY4dX2UKGgGaAloD0MI4sluZvQSUkCUhpRSlGgVTegDaBZHQIn2APkJa7p1fZQoaAZoCWgPQwinsb0W9CBHwJSGlFKUaBVL9GgWR0CKAmVeruIAdX2UKGgGaAloD0MIS+fDswRpU0CUhpRSlGgVTegDaBZHQIoNjiADq4Z1fZQoaAZoCWgPQwijXBq/8DoiQJSGlFKUaBVL5mgWR0CKGHZNfw7UdX2UKGgGaAloD0MIQ8pPqn3dYECUhpRSlGgVTegDaBZHQIoa44sEq2B1fZQoaAZoCWgPQwiFJ/T6ky5aQJSGlFKUaBVN6ANoFkdAihtYmLLpzXV9lChoBmgJaA9DCPIiE/BrjWBAlIaUUpRoFU3oA2gWR0CKLSG8EmpmdX2UKGgGaAloD0MI0ZLH0/IFV0CUhpRSlGgVTegDaBZHQIouoJu2qkx1fZQoaAZoCWgPQwiXHHdKB7lKwJSGlFKUaBVLymgWR0CKOP06HTJAdX2UKGgGaAloD0MIUyEeiZcMXUCUhpRSlGgVTegDaBZHQIpAqkhzNll1fZQoaAZoCWgPQwhiLT4FwFVoQJSGlFKUaBVN/AJoFkdAikFAcLjPwHV9lChoBmgJaA9DCMlxp3SwFlFAlIaUUpRoFU3oA2gWR0CKVAwYcebNdX2UKGgGaAloD0MIvTWwVYIHTMCUhpRSlGgVS75oFkdAil0xXXAdn3V9lChoBmgJaA9DCAr3yrxVNl1AlIaUUpRoFU3oA2gWR0CKXdslb/wRdX2UKGgGaAloD0MIwM+4cCDiWMCUhpRSlGgVTWwCaBZHQIpglzdUKiR1fZQoaAZoCWgPQwhe8dQjDVBUQJSGlFKUaBVN6ANoFkdAimoojW07bXV9lChoBmgJaA9DCL73N2ivZV7AlIaUUpRoFU2BAWgWR0CKsdWz4UN8dX2UKGgGaAloD0MIuFuSA3buW0CUhpRSlGgVTegDaBZHQIq7e5tm+TN1fZQoaAZoCWgPQwgPgSOBBjBbQJSGlFKUaBVN6ANoFkdAisFZqVQhwHV9lChoBmgJaA9DCP+R6dDpy11AlIaUUpRoFU3oA2gWR0CKw7W7OE/TdX2UKGgGaAloD0MIB3k9mBTdYECUhpRSlGgVTegDaBZHQIrGHio86mx1fZQoaAZoCWgPQwgbuAN1yhs6wJSGlFKUaBVL6WgWR0CKx0WqLjxTdX2UKGgGaAloD0MIhShf0EL2ZECUhpRSlGgVTegDaBZHQIrd6dz4k/t1fZQoaAZoCWgPQwg+IxEaweoywJSGlFKUaBVL+2gWR0CK4cHP/rB1dX2UKGgGaAloD0MIn8vUJHgjHECUhpRSlGgVS9VoFkdAiuPioCMglnV9lChoBmgJaA9DCO3T8ZiBChxAlIaUUpRoFUvJaBZHQIrkduivgWJ1fZQoaAZoCWgPQwhg5jv4iZZhQJSGlFKUaBVN6ANoFkdAiugNNi6QNnV9lChoBmgJaA9DCGFtjJ3woVhAlIaUUpRoFU3oA2gWR0CK6vuUliSadX2UKGgGaAloD0MISzs1lxtoP0CUhpRSlGgVTegDaBZHQIr8qjWTX8R1fZQoaAZoCWgPQwhT6Sec3QNeQJSGlFKUaBVN6ANoFkdAiv4hBAv+O3V9lChoBmgJaA9DCNehmpKsnWJAlIaUUpRoFU3oA2gWR0CLCDq+JxecdX2UKGgGaAloD0MI+PpalxqhEECUhpRSlGgVS9BoFkdAiwmj+zdDY3V9lChoBmgJaA9DCPmiPV5IszXAlIaUUpRoFUvWaBZHQIsgT+irT6V1fZQoaAZoCWgPQwj1Se6wiQxaQJSGlFKUaBVN6ANoFkdAiygQtz0Yj3V9lChoBmgJaA9DCJhuEoPAQmBAlIaUUpRoFU3oA2gWR0CLMs8NhE0BdX2UKGgGaAloD0MI1PAtrBunVECUhpRSlGgVTegDaBZHQIszjCm/Fit1fZQoaAZoCWgPQwgsZK4MKnJgQJSGlFKUaBVN6ANoFkdAizadIPK+z3V9lChoBmgJaA9DCLJHqBlSyFJAlIaUUpRoFU3oA2gWR0CLiilF+d9VdX2UKGgGaAloD0MIfNKJBFPfVUCUhpRSlGgVTegDaBZHQIubetr9ETh1fZQoaAZoCWgPQwgtlbcjnJYywJSGlFKUaBVNBgFoFkdAi5uzz/ZM+XV9lChoBmgJaA9DCDjzqzlAJklAlIaUUpRoFU3oA2gWR0CLon5hScbzdX2UKGgGaAloD0MI7x6g+3LKSECUhpRSlGgVTegDaBZHQIu995t3wCt1fZQoaAZoCWgPQwi4PxcNGRZZQJSGlFKUaBVN6ANoFkdAi8JyLQ5WBHV9lChoBmgJaA9DCIrMXODyLFhAlIaUUpRoFU3oA2gWR0CLxJZha1TjdX2UKGgGaAloD0MINA9gkd/PYUCUhpRSlGgVTegDaBZHQIvFNX3g1m91fZQoaAZoCWgPQwhbCd0lcSRfQJSGlFKUaBVN6ANoFkdAi8ic2Jiy6nV9lChoBmgJaA9DCJ6xL9l4PlHAlIaUUpRoFUv8aBZHQIvNw+6iCat1fZQoaAZoCWgPQwgYBiy5ioNbQJSGlFKUaBVN6ANoFkdAi93gE2YOUnV9lChoBmgJaA9DCFjhlo8kMmJAlIaUUpRoFU3oA2gWR0CL6oSkCV8kdX2UKGgGaAloD0MIherm4m8aVUCUhpRSlGgVTegDaBZHQIvr8hvBJqZ1fZQoaAZoCWgPQwib/1cdORROQJSGlFKUaBVN6ANoFkdAjAG+fh/AkHV9lChoBmgJaA9DCLzOhvwzXFxAlIaUUpRoFU3oA2gWR0CMCOOPNmlJdX2UKGgGaAloD0MIP5C8cygYXUCUhpRSlGgVTegDaBZHQIwTOOQyRCB1fZQoaAZoCWgPQwi4rS08LzRYQJSGlFKUaBVN6ANoFkdAjBPzhgmZ3XV9lChoBmgJaA9DCA0a+ie4wClAlIaUUpRoFU0IAWgWR0CMFk9vCMxXdX2UKGgGaAloD0MITioaa3/xV0CUhpRSlGgVTegDaBZHQIxrrlDF6zF1fZQoaAZoCWgPQwgGED6UaEnkv5SGlFKUaBVN6ANoFkdAjH0YNZvDQHV9lChoBmgJaA9DCFeW6CyzKExAlIaUUpRoFU3oA2gWR0CMfVKU3XI2dX2UKGgGaAloD0MIwTbiyW6CVkCUhpRSlGgVTegDaBZHQIyg00rK/211fZQoaAZoCWgPQwj59q5BX3NbQJSGlFKUaBVN6ANoFkdAjKVgDzRQanV9lChoBmgJaA9DCLSR66aUdl5AlIaUUpRoFU3oA2gWR0CMp7MK1G9YdX2UKGgGaAloD0MI1XlU/N+1XkCUhpRSlGgVTegDaBZHQIyoYBRyfcx1fZQoaAZoCWgPQwiXcVMDzR9TQJSGlFKUaBVN6ANoFkdAjKu4RujynXV9lChoBmgJaA9DCHfbheY6HTbAlIaUUpRoFU0AAWgWR0CMrDFfiPyTdX2UKGgGaAloD0MIFcRA174QSECUhpRSlGgVTegDaBZHQIywzrmhdt51fZQoaAZoCWgPQwjMm8O12v82QJSGlFKUaBVN6ANoFkdAjL6/5+H8CXV9lChoBmgJaA9DCDkJpS+ELBnAlIaUUpRoFUvbaBZHQIzKo5vLowF1fZQoaAZoCWgPQwgE4nX9gvJfQJSGlFKUaBVN6ANoFkdAjMs/0dzXBnV9lChoBmgJaA9DCMOBkCxgzFxAlIaUUpRoFU3oA2gWR0CM371Tzd1udX2UKGgGaAloD0MIYcPTK2VPRECUhpRSlGgVTegDaBZHQIzmI0oBq9J1fZQoaAZoCWgPQwi139qJkgFcQJSGlFKUaBVN6ANoFkdAjO/dAood/HV9lChoBmgJaA9DCIaTNH9M6l9AlIaUUpRoFU3oA2gWR0CM8Iy+HrQgdX2UKGgGaAloD0MIUrmJWpqRXUCUhpRSlGgVTegDaBZHQIzythiLEUF1fZQoaAZoCWgPQwgZxt0gWlstwJSGlFKUaBVNDAFoFkdAjPP1XvH933V9lChoBmgJaA9DCBCWsaEbdmZAlIaUUpRoFU3oA2gWR0CNRxFNL128dX2UKGgGaAloD0MIMpBnl2/9B0CUhpRSlGgVS+toFkdAjU5IYvWYnnV9lChoBmgJaA9DCGX7kLdc0WRAlIaUUpRoFU3oA2gWR0CNVTGCqZMMdX2UKGgGaAloD0MIgJvFi4WPWECUhpRSlGgVTegDaBZHQI10EXHim2t1fZQoaAZoCWgPQwiloNtLmotgQJSGlFKUaBVN6ANoFkdAjXf1aW5Yo3V9lChoBmgJaA9DCHcxzXSv1UdAlIaUUpRoFU3oA2gWR0CNehRXwLE2dX2UKGgGaAloD0MIZoUi3c+AXkCUhpRSlGgVTegDaBZHQI16q4+bExZ1fZQoaAZoCWgPQwhP54pSQsRgwJSGlFKUaBVNHAFoFkdAjXup3HJcPnV9lChoBmgJaA9DCAiPNo5YSl1AlIaUUpRoFU3oA2gWR0CNfazjWCmNdX2UKGgGaAloD0MIUyXK3lLKW0CUhpRSlGgVTegDaBZHQI2CFIsiB5J1fZQoaAZoCWgPQwjFOH8TCkFXQJSGlFKUaBVN6ANoFkdAjY5i1qnFYXV9lChoBmgJaA9DCAsMWd3q4l9AlIaUUpRoFU3oA2gWR0CNmnlkH2RJdX2UKGgGaAloD0MIOq+xS1TtWECUhpRSlGgVTegDaBZHQI2vj4tYjjd1fZQoaAZoCWgPQwipF3yakyNaQJSGlFKUaBVN6ANoFkdAjbZqWszVMHV9lChoBmgJaA9DCEwW9x+ZY29AlIaUUpRoFU3DAWgWR0CNt/qs2eg+dX2UKGgGaAloD0MIaOp1i8CjYECUhpRSlGgVTegDaBZHQI2/br3TNMZ1fZQoaAZoCWgPQwjPu7GgMEheQJSGlFKUaBVN6ANoFkdAjcIs4ku6E3V9lChoBmgJaA9DCK4upwTEyWRAlIaUUpRoFU3oA2gWR0CNw47/4qPPdX2UKGgGaAloD0MI6UMX1DdxYECUhpRSlGgVTegDaBZHQI3b1Qj2SMd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:253126d72800b74b4d7e948a59d5fc26a0e66f1acbf729eb6699ea8015407abd
|
3 |
+
size 144026
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe16f603680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe16f603710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe16f6037a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe16f603830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe16f6038c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe16f603950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe16f6039e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe16f603a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe16f603b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe16f603b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe16f603c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe16f655600>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651702563.70913,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEb0BL6ElyY+Jtn7u1elGr65BbW9etnAPAAAAAAAAAAAzQDLu1wTKbrTiOM6fPFpNb/wkLuQtAS6AACAPwAAgD8z3p+8jwIOuKiFdLyx3yU98T4Tuq60a7wAAIA/AACAPxrKdj24qZ8/y2fJPhSBzb6hE0m9syMhvQAAAAAAAAAAWgXlPTtM1T4DneS8Cw5MvlTuYr2wdXU9AAAAAAAAAADNGL08SOuPukQRDTlmc082wjdFu7PWIbgAAIA/AACAP93u+D4tQd29kgyOPHKjGb3L57Q8Og19vQAAAAAAAAAA5l8pP+yACr6ouXU8E8F4Omtx7D1W6Ag8AACAPwAAgD+mCtK9yFeIvC5CMj7FW648u7n7Pc46ir0AAIA/AAAAAJpJ3DwsfnM+8P1uPcelP77BLpQ9j1wTPQAAAAAAAAAAHSGXPkDXhr2y95s7Hrheul0e5L5sABq7AACAPwAAgD871Zy+Ax53vMqQsbseIIy5udy1Pf5EazcAAIA/AACAP9zDBr93ufq9szSCvjFzdLwIry8+m+f9vAAAAAAAAAAADTWvPQo4Xbug7Qm9Nkc/PJ2KCL3QCt48AAAAAAAAAADAM7a911Nwufu6RrtbjLa2bEaPOyOUJjYAAIA/AACAP5rHpLz2dEa6nUTUOfOzjTSDw7G7tVX1uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr+lBQSkuM0CUhpRSlIwBbJRLs4wBdJRHQImQKXt0FKV1fZQoaAZoCWgPQwjTwfo/h6tPwJSGlFKUaBVLy2gWR0CJz/1FH8TBdX2UKGgGaAloD0MIlUVhF0XqWECUhpRSlGgVTegDaBZHQInbuSbH6uZ1fZQoaAZoCWgPQwhmvK302jhawJSGlFKUaBVLxWgWR0CJ6m4//vORdX2UKGgGaAloD0MIoHB2a5niWUCUhpRSlGgVTegDaBZHQInxChvitJZ1fZQoaAZoCWgPQwgFMjuLXslgQJSGlFKUaBVN6ANoFkdAifOhomG/OHV9lChoBmgJaA9DCPCjGvZ7x1BAlIaUUpRoFU3oA2gWR0CJ9PjgAIY4dX2UKGgGaAloD0MI4sluZvQSUkCUhpRSlGgVTegDaBZHQIn2APkJa7p1fZQoaAZoCWgPQwinsb0W9CBHwJSGlFKUaBVL9GgWR0CKAmVeruIAdX2UKGgGaAloD0MIS+fDswRpU0CUhpRSlGgVTegDaBZHQIoNjiADq4Z1fZQoaAZoCWgPQwijXBq/8DoiQJSGlFKUaBVL5mgWR0CKGHZNfw7UdX2UKGgGaAloD0MIQ8pPqn3dYECUhpRSlGgVTegDaBZHQIoa44sEq2B1fZQoaAZoCWgPQwiFJ/T6ky5aQJSGlFKUaBVN6ANoFkdAihtYmLLpzXV9lChoBmgJaA9DCPIiE/BrjWBAlIaUUpRoFU3oA2gWR0CKLSG8EmpmdX2UKGgGaAloD0MI0ZLH0/IFV0CUhpRSlGgVTegDaBZHQIouoJu2qkx1fZQoaAZoCWgPQwiXHHdKB7lKwJSGlFKUaBVLymgWR0CKOP06HTJAdX2UKGgGaAloD0MIUyEeiZcMXUCUhpRSlGgVTegDaBZHQIpAqkhzNll1fZQoaAZoCWgPQwhiLT4FwFVoQJSGlFKUaBVN/AJoFkdAikFAcLjPwHV9lChoBmgJaA9DCMlxp3SwFlFAlIaUUpRoFU3oA2gWR0CKVAwYcebNdX2UKGgGaAloD0MIvTWwVYIHTMCUhpRSlGgVS75oFkdAil0xXXAdn3V9lChoBmgJaA9DCAr3yrxVNl1AlIaUUpRoFU3oA2gWR0CKXdslb/wRdX2UKGgGaAloD0MIwM+4cCDiWMCUhpRSlGgVTWwCaBZHQIpglzdUKiR1fZQoaAZoCWgPQwhe8dQjDVBUQJSGlFKUaBVN6ANoFkdAimoojW07bXV9lChoBmgJaA9DCL73N2ivZV7AlIaUUpRoFU2BAWgWR0CKsdWz4UN8dX2UKGgGaAloD0MIuFuSA3buW0CUhpRSlGgVTegDaBZHQIq7e5tm+TN1fZQoaAZoCWgPQwgPgSOBBjBbQJSGlFKUaBVN6ANoFkdAisFZqVQhwHV9lChoBmgJaA9DCP+R6dDpy11AlIaUUpRoFU3oA2gWR0CKw7W7OE/TdX2UKGgGaAloD0MIB3k9mBTdYECUhpRSlGgVTegDaBZHQIrGHio86mx1fZQoaAZoCWgPQwgbuAN1yhs6wJSGlFKUaBVL6WgWR0CKx0WqLjxTdX2UKGgGaAloD0MIhShf0EL2ZECUhpRSlGgVTegDaBZHQIrd6dz4k/t1fZQoaAZoCWgPQwg+IxEaweoywJSGlFKUaBVL+2gWR0CK4cHP/rB1dX2UKGgGaAloD0MIn8vUJHgjHECUhpRSlGgVS9VoFkdAiuPioCMglnV9lChoBmgJaA9DCO3T8ZiBChxAlIaUUpRoFUvJaBZHQIrkduivgWJ1fZQoaAZoCWgPQwhg5jv4iZZhQJSGlFKUaBVN6ANoFkdAiugNNi6QNnV9lChoBmgJaA9DCGFtjJ3woVhAlIaUUpRoFU3oA2gWR0CK6vuUliSadX2UKGgGaAloD0MISzs1lxtoP0CUhpRSlGgVTegDaBZHQIr8qjWTX8R1fZQoaAZoCWgPQwhT6Sec3QNeQJSGlFKUaBVN6ANoFkdAiv4hBAv+O3V9lChoBmgJaA9DCNehmpKsnWJAlIaUUpRoFU3oA2gWR0CLCDq+JxecdX2UKGgGaAloD0MI+PpalxqhEECUhpRSlGgVS9BoFkdAiwmj+zdDY3V9lChoBmgJaA9DCPmiPV5IszXAlIaUUpRoFUvWaBZHQIsgT+irT6V1fZQoaAZoCWgPQwj1Se6wiQxaQJSGlFKUaBVN6ANoFkdAiygQtz0Yj3V9lChoBmgJaA9DCJhuEoPAQmBAlIaUUpRoFU3oA2gWR0CLMs8NhE0BdX2UKGgGaAloD0MI1PAtrBunVECUhpRSlGgVTegDaBZHQIszjCm/Fit1fZQoaAZoCWgPQwgsZK4MKnJgQJSGlFKUaBVN6ANoFkdAizadIPK+z3V9lChoBmgJaA9DCLJHqBlSyFJAlIaUUpRoFU3oA2gWR0CLiilF+d9VdX2UKGgGaAloD0MIfNKJBFPfVUCUhpRSlGgVTegDaBZHQIubetr9ETh1fZQoaAZoCWgPQwgtlbcjnJYywJSGlFKUaBVNBgFoFkdAi5uzz/ZM+XV9lChoBmgJaA9DCDjzqzlAJklAlIaUUpRoFU3oA2gWR0CLon5hScbzdX2UKGgGaAloD0MI7x6g+3LKSECUhpRSlGgVTegDaBZHQIu995t3wCt1fZQoaAZoCWgPQwi4PxcNGRZZQJSGlFKUaBVN6ANoFkdAi8JyLQ5WBHV9lChoBmgJaA9DCIrMXODyLFhAlIaUUpRoFU3oA2gWR0CLxJZha1TjdX2UKGgGaAloD0MINA9gkd/PYUCUhpRSlGgVTegDaBZHQIvFNX3g1m91fZQoaAZoCWgPQwhbCd0lcSRfQJSGlFKUaBVN6ANoFkdAi8ic2Jiy6nV9lChoBmgJaA9DCJ6xL9l4PlHAlIaUUpRoFUv8aBZHQIvNw+6iCat1fZQoaAZoCWgPQwgYBiy5ioNbQJSGlFKUaBVN6ANoFkdAi93gE2YOUnV9lChoBmgJaA9DCFjhlo8kMmJAlIaUUpRoFU3oA2gWR0CL6oSkCV8kdX2UKGgGaAloD0MIherm4m8aVUCUhpRSlGgVTegDaBZHQIvr8hvBJqZ1fZQoaAZoCWgPQwib/1cdORROQJSGlFKUaBVN6ANoFkdAjAG+fh/AkHV9lChoBmgJaA9DCLzOhvwzXFxAlIaUUpRoFU3oA2gWR0CMCOOPNmlJdX2UKGgGaAloD0MIP5C8cygYXUCUhpRSlGgVTegDaBZHQIwTOOQyRCB1fZQoaAZoCWgPQwi4rS08LzRYQJSGlFKUaBVN6ANoFkdAjBPzhgmZ3XV9lChoBmgJaA9DCA0a+ie4wClAlIaUUpRoFU0IAWgWR0CMFk9vCMxXdX2UKGgGaAloD0MITioaa3/xV0CUhpRSlGgVTegDaBZHQIxrrlDF6zF1fZQoaAZoCWgPQwgGED6UaEnkv5SGlFKUaBVN6ANoFkdAjH0YNZvDQHV9lChoBmgJaA9DCFeW6CyzKExAlIaUUpRoFU3oA2gWR0CMfVKU3XI2dX2UKGgGaAloD0MIwTbiyW6CVkCUhpRSlGgVTegDaBZHQIyg00rK/211fZQoaAZoCWgPQwj59q5BX3NbQJSGlFKUaBVN6ANoFkdAjKVgDzRQanV9lChoBmgJaA9DCLSR66aUdl5AlIaUUpRoFU3oA2gWR0CMp7MK1G9YdX2UKGgGaAloD0MI1XlU/N+1XkCUhpRSlGgVTegDaBZHQIyoYBRyfcx1fZQoaAZoCWgPQwiXcVMDzR9TQJSGlFKUaBVN6ANoFkdAjKu4RujynXV9lChoBmgJaA9DCHfbheY6HTbAlIaUUpRoFU0AAWgWR0CMrDFfiPyTdX2UKGgGaAloD0MIFcRA174QSECUhpRSlGgVTegDaBZHQIywzrmhdt51fZQoaAZoCWgPQwjMm8O12v82QJSGlFKUaBVN6ANoFkdAjL6/5+H8CXV9lChoBmgJaA9DCDkJpS+ELBnAlIaUUpRoFUvbaBZHQIzKo5vLowF1fZQoaAZoCWgPQwgE4nX9gvJfQJSGlFKUaBVN6ANoFkdAjMs/0dzXBnV9lChoBmgJaA9DCMOBkCxgzFxAlIaUUpRoFU3oA2gWR0CM371Tzd1udX2UKGgGaAloD0MIYcPTK2VPRECUhpRSlGgVTegDaBZHQIzmI0oBq9J1fZQoaAZoCWgPQwi139qJkgFcQJSGlFKUaBVN6ANoFkdAjO/dAood/HV9lChoBmgJaA9DCIaTNH9M6l9AlIaUUpRoFU3oA2gWR0CM8Iy+HrQgdX2UKGgGaAloD0MIUrmJWpqRXUCUhpRSlGgVTegDaBZHQIzythiLEUF1fZQoaAZoCWgPQwgZxt0gWlstwJSGlFKUaBVNDAFoFkdAjPP1XvH933V9lChoBmgJaA9DCBCWsaEbdmZAlIaUUpRoFU3oA2gWR0CNRxFNL128dX2UKGgGaAloD0MIMpBnl2/9B0CUhpRSlGgVS+toFkdAjU5IYvWYnnV9lChoBmgJaA9DCGX7kLdc0WRAlIaUUpRoFU3oA2gWR0CNVTGCqZMMdX2UKGgGaAloD0MIgJvFi4WPWECUhpRSlGgVTegDaBZHQI10EXHim2t1fZQoaAZoCWgPQwiloNtLmotgQJSGlFKUaBVN6ANoFkdAjXf1aW5Yo3V9lChoBmgJaA9DCHcxzXSv1UdAlIaUUpRoFU3oA2gWR0CNehRXwLE2dX2UKGgGaAloD0MIZoUi3c+AXkCUhpRSlGgVTegDaBZHQI16q4+bExZ1fZQoaAZoCWgPQwhP54pSQsRgwJSGlFKUaBVNHAFoFkdAjXup3HJcPnV9lChoBmgJaA9DCAiPNo5YSl1AlIaUUpRoFU3oA2gWR0CNfazjWCmNdX2UKGgGaAloD0MIUyXK3lLKW0CUhpRSlGgVTegDaBZHQI2CFIsiB5J1fZQoaAZoCWgPQwjFOH8TCkFXQJSGlFKUaBVN6ANoFkdAjY5i1qnFYXV9lChoBmgJaA9DCAsMWd3q4l9AlIaUUpRoFU3oA2gWR0CNmnlkH2RJdX2UKGgGaAloD0MIOq+xS1TtWECUhpRSlGgVTegDaBZHQI2vj4tYjjd1fZQoaAZoCWgPQwipF3yakyNaQJSGlFKUaBVN6ANoFkdAjbZqWszVMHV9lChoBmgJaA9DCEwW9x+ZY29AlIaUUpRoFU3DAWgWR0CNt/qs2eg+dX2UKGgGaAloD0MIaOp1i8CjYECUhpRSlGgVTegDaBZHQI2/br3TNMZ1fZQoaAZoCWgPQwjPu7GgMEheQJSGlFKUaBVN6ANoFkdAjcIs4ku6E3V9lChoBmgJaA9DCK4upwTEyWRAlIaUUpRoFU3oA2gWR0CNw47/4qPPdX2UKGgGaAloD0MI6UMX1DdxYECUhpRSlGgVTegDaBZHQI3b1Qj2SMd1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a449975c9b41829ae9424e667c4ce7d111400590be91a6d5286e77cb61e4b34
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bd18d635046d922afb656c8608e8c4a9315fd9483a0e6fe8f1a30de0b897279
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:121f7e899a0de1b9b09359841ff6c4e546086116b45cbfacf265f4379623ae00
|
3 |
+
size 250036
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 176.1205977597316, "std_reward": 31.403024149226727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T22:30:45.330321"}
|