File size: 14,061 Bytes
9d93315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""mC4 dataset based on Common Crawl."""


import gzip
import json

import datasets
import kenlm
import numpy as np
from numpy.random import default_rng


logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
A colossal, cleaned version of Common Crawl's web crawl corpus.

Based on Common Crawl dataset: "https://commoncrawl.org".

This is the processed version of Google's mC4 dataset by AllenAI.
"""

_CITATION = """
@article{2019t5,
    author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
    title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
    journal = {arXiv e-prints},
    year = {2019},
    archivePrefix = {arXiv},
    eprint = {1910.10683},
}
"""

_URL = "https://github.com/allenai/allennlp/discussions/5056"

_DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/multilingual/c4-{language}{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"

_LANGUAGES = [
    "af",
    "am",
    "ar",
    "az",
    "be",
    "bg",
    "bg-Latn",
    "bn",
    "ca",
    "ceb",
    "co",
    "cs",
    "cy",
    "da",
    "de",
    "el",
    "el-Latn",
    "en",
    "eo",
    "es",
    "et",
    "eu",
    "fa",
    "fi",
    "fil",
    "fr",
    "fy",
    "ga",
    "gd",
    "gl",
    "gu",
    "ha",
    "haw",
    "hi",
    "hi-Latn",
    "hmn",
    "ht",
    "hu",
    "hy",
    "id",
    "ig",
    "is",
    "it",
    "iw",
    "ja",
    "ja-Latn",
    "jv",
    "ka",
    "kk",
    "km",
    "kn",
    "ko",
    "ku",
    "ky",
    "la",
    "lb",
    "lo",
    "lt",
    "lv",
    "mg",
    "mi",
    "mk",
    "ml",
    "mn",
    "mr",
    "ms",
    "mt",
    "my",
    "ne",
    "nl",
    "no",
    "ny",
    "pa",
    "pl",
    "ps",
    "pt",
    "ro",
    "ru",
    "ru-Latn",
    "sd",
    "si",
    "sk",
    "sl",
    "sm",
    "sn",
    "so",
    "sq",
    "sr",
    "st",
    "su",
    "sv",
    "sw",
    "ta",
    "te",
    "tg",
    "th",
    "tr",
    "uk",
    "und",
    "ur",
    "uz",
    "vi",
    "xh",
    "yi",
    "yo",
    "zh",
    "zh-Latn",
    "zu",
]

_N_SHARDS_PER_SPLIT = {
    "af": {"train": 64, "validation": 1},
    "am": {"train": 16, "validation": 1},
    "ar": {"train": 1024, "validation": 4},
    "az": {"train": 256, "validation": 1},
    "be": {"train": 128, "validation": 1},
    "bg": {"train": 1024, "validation": 1},
    "bg-Latn": {"train": 4, "validation": 1},
    "bn": {"train": 512, "validation": 1},
    "ca": {"train": 512, "validation": 1},
    "ceb": {"train": 8, "validation": 1},
    "co": {"train": 8, "validation": 1},
    "cs": {"train": 1024, "validation": 2},
    "cy": {"train": 256, "validation": 1},
    "da": {"train": 1024, "validation": 1},
    "de": {"train": 2048, "validation": 16},
    "el": {"train": 1024, "validation": 2},
    "el-Latn": {"train": 16, "validation": 1},
    "en": {"train": 11264, "validation": 128},
    "eo": {"train": 32, "validation": 1},
    "es": {"train": 2048, "validation": 16},
    "et": {"train": 256, "validation": 1},
    "eu": {"train": 64, "validation": 1},
    "fa": {"train": 1024, "validation": 2},
    "fi": {"train": 1024, "validation": 1},
    "fil": {"train": 64, "validation": 1},
    "fr": {"train": 2048, "validation": 16},
    "fy": {"train": 16, "validation": 1},
    "ga": {"train": 16, "validation": 1},
    "gd": {"train": 16, "validation": 1},
    "gl": {"train": 128, "validation": 1},
    "gu": {"train": 64, "validation": 1},
    "ha": {"train": 8, "validation": 1},
    "haw": {"train": 2, "validation": 1},
    "hi": {"train": 1024, "validation": 2},
    "hi-Latn": {"train": 16, "validation": 1},
    "hmn": {"train": 8, "validation": 1},
    "ht": {"train": 8, "validation": 1},
    "hu": {"train": 1024, "validation": 2},
    "hy": {"train": 128, "validation": 1},
    "id": {"train": 1024, "validation": 4},
    "ig": {"train": 4, "validation": 1},
    "is": {"train": 128, "validation": 1},
    "it": {"train": 1024, "validation": 8},
    "iw": {"train": 1024, "validation": 1},
    "ja": {"train": 1024, "validation": 8},
    "ja-Latn": {"train": 8, "validation": 1},
    "jv": {"train": 8, "validation": 1},
    "ka": {"train": 256, "validation": 1},
    "kk": {"train": 256, "validation": 1},
    "km": {"train": 64, "validation": 1},
    "kn": {"train": 64, "validation": 1},
    "ko": {"train": 1024, "validation": 1},
    "ku": {"train": 16, "validation": 1},
    "ky": {"train": 64, "validation": 1},
    "la": {"train": 64, "validation": 1},
    "lb": {"train": 32, "validation": 1},
    "lo": {"train": 8, "validation": 1},
    "lt": {"train": 512, "validation": 1},
    "lv": {"train": 256, "validation": 1},
    "mg": {"train": 8, "validation": 1},
    "mi": {"train": 4, "validation": 1},
    "mk": {"train": 128, "validation": 1},
    "ml": {"train": 128, "validation": 1},
    "mn": {"train": 128, "validation": 1},
    "mr": {"train": 1024, "validation": 1},
    "ms": {"train": 512, "validation": 1},
    "mt": {"train": 128, "validation": 1},
    "my": {"train": 64, "validation": 1},
    "ne": {"train": 256, "validation": 1},
    "nl": {"train": 1024, "validation": 4},
    "no": {"train": 1024, "validation": 1},
    "ny": {"train": 4, "validation": 1},
    "pa": {"train": 32, "validation": 1},
    "pl": {"train": 1024, "validation": 4},
    "ps": {"train": 16, "validation": 1},
    "pt": {"train": 1024, "validation": 4},
    "ro": {"train": 1024, "validation": 2},
    "ru": {"train": 4096, "validation": 32},
    "ru-Latn": {"train": 32, "validation": 1},
    "sd": {"train": 64, "validation": 1},
    "si": {"train": 64, "validation": 1},
    "sk": {"train": 512, "validation": 1},
    "sl": {"train": 256, "validation": 1},
    "sm": {"train": 4, "validation": 1},
    "sn": {"train": 8, "validation": 1},
    "so": {"train": 64, "validation": 1},
    "sq": {"train": 128, "validation": 1},
    "sr": {"train": 256, "validation": 1},
    "st": {"train": 2, "validation": 1},
    "su": {"train": 4, "validation": 1},
    "sv": {"train": 1024, "validation": 2},
    "sw": {"train": 32, "validation": 1},
    "ta": {"train": 256, "validation": 1},
    "te": {"train": 128, "validation": 1},
    "tg": {"train": 64, "validation": 1},
    "th": {"train": 1024, "validation": 1},
    "tr": {"train": 1024, "validation": 4},
    "uk": {"train": 1024, "validation": 2},
    "und": {"train": 3072, "validation": 32},
    "ur": {"train": 128, "validation": 1},
    "uz": {"train": 32, "validation": 1},
    "vi": {"train": 1024, "validation": 4},
    "xh": {"train": 2, "validation": 1},
    "yi": {"train": 16, "validation": 1},
    "yo": {"train": 2, "validation": 1},
    "zh": {"train": 1024, "validation": 2},
    "zh-Latn": {"train": 8, "validation": 1},
    "zu": {"train": 8, "validation": 1},
}


class Mc4Config(datasets.BuilderConfig):
    """BuilderConfig for mC4."""

    def __init__(self, *args, languages, **kwargs):
        """BuilderConfig for mC4.
        Args:
            languages (:obj:`List[str]`): list of languages to load
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name="+".join(languages),
            **kwargs,
        )
        self.languages = languages


class Mc4(datasets.GeneratorBasedBuilder):
    """mC4, a colossal, cleaned version of Common Crawl's web crawl corpus."""

    BUILDER_CONFIGS = [Mc4Config(languages=[lang]) for lang in _LANGUAGES]
    BUILDER_CONFIG_CLASS = Mc4Config

    def __init__(self, *args, writer_batch_size=None, **kwargs):
        self.data_files = kwargs.pop("data_files", {})
        self.sampling_method = kwargs.pop("sampling_method", None)
        self.perplexity_model = kwargs.pop("perplexity_model", None)
        self.sampling_factor = kwargs.pop("sampling_factor", None)
        self.boundaries = kwargs.pop("boundaries", None)
        self.seed = kwargs.pop("seed", None)
        if self.sampling_method:
            if self.seed is not None:
                self.rng = default_rng(self.seed)
            else:
                self.rng = default_rng()
            if self.sampling_method == "random":
                self.should_keep_doc = self._should_keep_doc_random
            else:
                # Loading 5-gram model
                # http://dl.fbaipublicfiles.com/cc_net/lm/es.arpa.bin
                logger.info("loading model = %s", self.perplexity_model)
                self.pp_model = kenlm.Model(self.perplexity_model)
                if self.sampling_method == "gaussian":
                    self.should_keep_doc = self._should_keep_doc_gaussian
                else:
                    self.should_keep_doc = self._should_keep_doc_step
        super().__init__(*args, writer_batch_size=writer_batch_size, **kwargs)

    def get_perplexity(self, doc):
        doc_log_score, doc_length = 0, 0
        for line in doc.split("\n"):
            log_score = self.pp_model.score(line)
            length = len(line.split()) + 1
            doc_log_score += log_score
            doc_length += length
        return 10.0 ** (-doc_log_score / doc_length)

    def _should_keep_doc_step(self, doc, factor=1.5e5, boundaries=None):
        perplexity = self.get_perplexity(doc)
        if boundaries is None:
            boundaries = [536394.99320948, 662247.50212365, 919250.87225178]
        if perplexity <= boundaries[0]:
            quartile_range = boundaries[0]
        elif boundaries[0] < perplexity < boundaries[1]:
            quartile_range = boundaries[1] - boundaries[0]
        elif boundaries[1] < perplexity < boundaries[2]:
            quartile_range = boundaries[2] - boundaries[1]
        elif perplexity >= boundaries[2]:
            quartile_range = 10 * boundaries[2]
        probability = factor / quartile_range
        return self.rng.uniform() < probability

    def _should_keep_doc_gaussian(self, doc, factor=0.78, boundaries=None):
        perplexity = self.get_perplexity(doc)
        if boundaries is not None:
            m = boundaries[1]
        else:
            m = 662247.50212365
        exponential = np.exp(-9/2 * ((perplexity - m) / m) ** 2)
        weighted_perplexity = factor * exponential
        return self.rng.uniform() < weighted_perplexity

    def _should_keep_doc_random(self, doc, factor=None, boundaries=None):
        if factor is None:
            factor = 0.5
        return self.rng.uniform() <= factor

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "timestamp": datasets.Value("string"),
                    "url": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_urls = {}
        for split in ["train", "validation"]:
            data_urls[split] = [
                _DATA_URL.format(
                    language=self.config.name,
                    split_suffix="-validation" if split == "validation" else "",
                    index=index,
                    n_shards=_N_SHARDS_PER_SPLIT[lang][split],
                )
                for lang in self.config.languages
                for index in range(_N_SHARDS_PER_SPLIT[lang][split])
            ]
        if "train" in self.data_files:
            train_downloaded_files = self.data_files["train"]
            if not isinstance(train_downloaded_files, (tuple, list)):
                train_downloaded_files = [train_downloaded_files]
        else:
            train_downloaded_files = dl_manager.download(data_urls["train"])
        if "validation" in self.data_files:
            validation_downloaded_files = self.data_files["validation"]
            if not isinstance(validation_downloaded_files, (tuple, list)):
                validation_downloaded_files = [validation_downloaded_files]
        else:
            validation_downloaded_files = dl_manager.download(data_urls["validation"])
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
            ),
        ]

    def _generate_examples(self, filepaths):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        id_ = 0
        for filepath in filepaths:
            logger.info("generating examples from = %s", filepath)
            if filepath.endswith("jsonl"):
                with open(filepath, "r", encoding="utf-8") as f:
                    for line in f:
                        if line:
                            example = json.loads(line)
                            yield id_, example
                            id_ += 1
            else:
                with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
                    if self.sampling_method:
                        logger.info("sampling method = %s", self.sampling_method)
                        for line in f:
                            if line:
                                example = json.loads(line)
                                if self.should_keep_doc(
                                    example["text"],
                                    factor=self.sampling_factor,
                                    boundaries=self.boundaries):
                                    yield id_, example
                                    id_ += 1
                    else:
                        for line in f:
                            if line:
                                example = json.loads(line)
                                yield id_, example
                                id_ += 1