File size: 7,848 Bytes
496cdcf b2611fe 496cdcf a6fe1fb 496cdcf 14195fc 496cdcf a6fe1fb 496cdcf b2611fe 496cdcf a6fe1fb 496cdcf a6fe1fb 496cdcf 8d301da 496cdcf 5001a20 496cdcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_1.png
- text: 'a photo of cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'a photo of cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_1.png
- text: 'a photo of tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'a photo of tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_1.png
- text: 'a photo with tommy chong sitting to the left of cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'a photo with tommy chong sitting to the left of cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_1.png
- text: 'a photo with cheech marin sitting to the right of tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'a photo with cheech marin sitting to the right of tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_1.png
- text: 'cheech and chong together in a photograph'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'cheech and chong together in a photograph'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_1.png
- text: 'young cheech and chong in a black and white photograph'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_12_0.png
- text: 'young cheech and chong in a black and white photograph'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_13_1.png
- text: 'elderly cheech and chong in an interview on the BBC'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_14_0.png
- text: 'elderly cheech and chong in an interview on the BBC'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_15_1.png
- text: 'old tommy chong on a sitcom in the 1990s'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_16_0.png
- text: 'old tommy chong on a sitcom in the 1990s'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_17_1.png
- text: 'anime cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_18_0.png
- text: 'anime cheech marin'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_19_1.png
- text: 'anime tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_20_0.png
- text: 'anime tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_21_1.png
- text: 'A photo-realistic image of a tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_22_0.png
- text: 'A photo-realistic image of a tommy chong'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_23_1.png
---
# Flux.1-dev-LoKr-test1.4-nomask
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
A photo-realistic image of a tommy chong
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolutions: `1024x1024,1280x768`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 5400
- Learning rate: 0.001
- Effective batch size: 6
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 12,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
```
## Datasets
### cheechandchong-512
- Repeats: 500
- Total number of images: ~24
- Total number of aspect buckets: 5
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### cheechandchong-1024
- Repeats: 500
- Total number of images: ~30
- Total number of aspect buckets: 8
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### cheechandchong-512-crop
- Repeats: 500
- Total number of images: ~18
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### cheechandchong-1024-crop
- Repeats: 500
- Total number of images: ~18
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### regularisation-512
- Repeats: 0
- Total number of images: ~5886
- Total number of aspect buckets: 8
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### regularisation-1024
- Repeats: 0
- Total number of images: ~5892
- Total number of aspect buckets: 17
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### regularisation-512-crop
- Repeats: 0
- Total number of images: ~5874
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### regularisation-1024-crop
- Repeats: 0
- Total number of images: ~5874
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a tommy chong"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|