File size: 7,848 Bytes
496cdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d756aa
496cdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6fe1fb
496cdcf
0d756aa
496cdcf
 
 
 
 
a6fe1fb
496cdcf
e43c6ae
496cdcf
 
 
 
 
a6fe1fb
496cdcf
 
 
 
 
 
 
a6fe1fb
496cdcf
 
 
 
 
 
 
 
 
8d301da
496cdcf
 
 
 
 
 
 
5001a20
496cdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_1.png
- text: 'a photo of cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'a photo of cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_1.png
- text: 'a photo of tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
- text: 'a photo of tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_5_1.png
- text: 'a photo with tommy chong sitting to the left of cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_6_0.png
- text: 'a photo with tommy chong sitting to the left of cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_7_1.png
- text: 'a photo with cheech marin sitting to the right of tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_8_0.png
- text: 'a photo with cheech marin sitting to the right of tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_9_1.png
- text: 'cheech and chong together in a photograph'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_10_0.png
- text: 'cheech and chong together in a photograph'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_11_1.png
- text: 'young cheech and chong in a black and white photograph'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_12_0.png
- text: 'young cheech and chong in a black and white photograph'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_13_1.png
- text: 'elderly cheech and chong in an interview on the BBC'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_14_0.png
- text: 'elderly cheech and chong in an interview on the BBC'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_15_1.png
- text: 'old tommy chong on a sitcom in the 1990s'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_16_0.png
- text: 'old tommy chong on a sitcom in the 1990s'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_17_1.png
- text: 'anime cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_18_0.png
- text: 'anime cheech marin'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_19_1.png
- text: 'anime tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_20_0.png
- text: 'anime tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_21_1.png
- text: 'A photo-realistic image of a tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_22_0.png
- text: 'A photo-realistic image of a tommy chong'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_23_1.png
---

# Flux.1-dev-LoKr-test1.4-nomask

This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:



```
A photo-realistic image of a tommy chong
```

## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolutions: `1024x1024,1280x768`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 0
- Training steps: 5000
- Learning rate: 0.001
- Effective batch size: 6
  - Micro-batch size: 2
  - Gradient accumulation steps: 1
  - Number of GPUs: 3
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 12,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 12
            },
            "FeedForward": {
                "factor": 6
            }
        }
    }
}
```

## Datasets

### cheechandchong-512
- Repeats: 500
- Total number of images: ~24
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### cheechandchong-1024
- Repeats: 500
- Total number of images: ~30
- Total number of aspect buckets: 8
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### cheechandchong-512-crop
- Repeats: 500
- Total number of images: ~18
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### cheechandchong-1024-crop
- Repeats: 500
- Total number of images: ~18
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### regularisation-512
- Repeats: 0
- Total number of images: ~5886
- Total number of aspect buckets: 8
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### regularisation-1024
- Repeats: 0
- Total number of images: ~5892
- Total number of aspect buckets: 17
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### regularisation-512-crop
- Repeats: 0
- Total number of images: ~5874
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### regularisation-1024-crop
- Repeats: 0
- Total number of images: ~5874
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "A photo-realistic image of a tommy chong"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```