Edit model card

simpletuner-sdxl-lora-test

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-xl-base-1.0.

The main validation prompt used during training was:

A photo-realistic image of a cat

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A photo-realistic image of a cat
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0

  • Training steps: 50

  • Learning rate: 3e-07

    • Learning rate schedule: constant
    • Warmup steps: 100
  • Max grad norm: 2.0

  • Effective batch size: 3

    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 3
  • Gradient checkpointing: True

  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])

  • Optimizer: bnb-lion8bit

  • Trainable parameter precision: Pure BF16

  • Caption dropout probability: 10.0%

  • LoRA Rank: 16

  • LoRA Alpha: None

  • LoRA Dropout: 0.1

  • LoRA initialisation style: default

Datasets

signs

  • Repeats: 0
  • Total number of images: ~420
  • Total number of aspect buckets: 7
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'bghira/simpletuner-sdxl-lora-test'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.unet, weights=qint8)
#freeze(pipeline.unet)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
158
Inference API
Examples

Model tree for bghira/simpletuner-sdxl-lora-test

Adapter
(4858)
this model