Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-lunarlander-v2.zip +3 -0
- ppo-lunarlander-v2/_stable_baselines3_version +1 -0
- ppo-lunarlander-v2/data +94 -0
- ppo-lunarlander-v2/policy.optimizer.pth +3 -0
- ppo-lunarlander-v2/policy.pth +3 -0
- ppo-lunarlander-v2/pytorch_variables.pth +3 -0
- ppo-lunarlander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.15 +/- 71.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f0efcda60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f0efcdaf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f0efcdb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f0efcdc10>", "_build": "<function ActorCriticPolicy._build at 0x7f7f0efcdca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f0efcdd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f0efcddc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f0efcde50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f0efcdee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f0efcdf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f0efd1040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f0efcc2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670966366701666669, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOHQj6UOaW8cL/GOieY+7h9axS+luwQugAAgD8AAIA/2vLXPUgrhrqrFRYyDO4zL0hRojrY2CazAACAPwAAgD+zZuC99rg4ulclHbpqWvi4cTFwu+1aQzkAAIA/AACAP7NuRr68zbk+cv0cPsNRgb4ymUe9xoobPgAAAAAAAAAAzaucvcWHhzySOdc9yVUDvtOnID0nGg49AAAAAAAAAAAmvh0+fRQaPkB+jb3Q4Fe+MmaYPKx+Cj0AAAAAAAAAAABqPz7fBMQ80sscup6hwbg2I1o+yzFrOQAAgD8AAIA/8whCPjSo3ry2ugg6XJqYuB99RL77Nz65AACAPwAAgD8aZKA9wteJP35jXz7Glhq/oFm6PResGj0AAAAAAAAAAObqVr0Tkyg/R7uFPLa5yb4W/pu8tiVmOwAAAAAAAAAAZiesPMlaFT1iKKQ9ilgevrICKj0bXPU8AAAAAAAAAACtNU6+AcnePa3Iaz1MbYq+8BD8uhjrib0AAAAAAAAAAPPYOT4bnYe8cjckPK4mh7rprei9k9JYuwAAgD8AAIA/zQYBvFBPsj8/7g++x3VYvjDjxLsUsbK9AAAAAAAAAABAAs+9FNSuuqT0ED65edm1S8pBOvo1y7QAAIA/AAAAAA1n1b08mAc+orJlPgqZgb5oXrQ9EixRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9GxWfa7MY0CUhpRSlIwBbJRN6AOMAXSUR0CVv8fgaWHDdX2UKGgGaAloD0MIkXu6uuNhbkCUhpRSlGgVS+RoFkdAlb/HY150KnV9lChoBmgJaA9DCIuNeR2xN3FAlIaUUpRoFUvWaBZHQJXAYgNgBtF1fZQoaAZoCWgPQwh4Y0FhkKlwQJSGlFKUaBVL5mgWR0CVwO09yLhrdX2UKGgGaAloD0MIIt46/3YlcUCUhpRSlGgVS+xoFkdAlcELQ5WBBnV9lChoBmgJaA9DCNCaH39pPm5AlIaUUpRoFUvTaBZHQJXBHEehf0F1fZQoaAZoCWgPQwivmXyzTeduQJSGlFKUaBVL+GgWR0CVwkavRqoIdX2UKGgGaAloD0MIG2K85lVpYUCUhpRSlGgVTegDaBZHQJXCh99c8kl1fZQoaAZoCWgPQwiYUSy3NB5xQJSGlFKUaBVL8mgWR0CVw8GJvYOEdX2UKGgGaAloD0MIyy+DMSIbcECUhpRSlGgVS/5oFkdAlcQXJYDDCXV9lChoBmgJaA9DCIodjUP9u21AlIaUUpRoFUvpaBZHQJXEKb5M10l1fZQoaAZoCWgPQwhq+uyA6/luQJSGlFKUaBVL1GgWR0CVxKRYzSCwdX2UKGgGaAloD0MIURVT6SfVcECUhpRSlGgVS95oFkdAlcWHh0hePnV9lChoBmgJaA9DCEMaFTgZ1nBAlIaUUpRoFUv5aBZHQJXGOTvAoG91fZQoaAZoCWgPQwjn/1VHDmJtQJSGlFKUaBVL5GgWR0CVxmubqhUSdX2UKGgGaAloD0MIBYcXRGSucECUhpRSlGgVS9VoFkdAlcbUIkZ75XV9lChoBmgJaA9DCKDf92/ecnJAlIaUUpRoFUvaaBZHQJXG5e4TbnJ1fZQoaAZoCWgPQwiVLCehtJNxQJSGlFKUaBVNEwFoFkdAlccKneizs3V9lChoBmgJaA9DCIULeQQ3OHFAlIaUUpRoFUv0aBZHQJXHcB+4LCx1fZQoaAZoCWgPQwggzy7fOkVxQJSGlFKUaBVL82gWR0CVyNfwZwXJdX2UKGgGaAloD0MIBYnt7gE3cUCUhpRSlGgVS81oFkdAlclZwS8J2XV9lChoBmgJaA9DCFVOe0rOa3BAlIaUUpRoFUvYaBZHQJXKDF2mpER1fZQoaAZoCWgPQwj8HB8tzlJwQJSGlFKUaBVNGAFoFkdAlcomPo3aSXV9lChoBmgJaA9DCHWr56R3PmxAlIaUUpRoFUv1aBZHQJXKyckMTex1fZQoaAZoCWgPQwhi1ouhHEpuQJSGlFKUaBVL42gWR0CVyt8an753dX2UKGgGaAloD0MID167tOExckCUhpRSlGgVS9xoFkdAlcuB8MNMG3V9lChoBmgJaA9DCIwTX+0oFHFAlIaUUpRoFUviaBZHQJXM8pYs/Y91fZQoaAZoCWgPQwjwarkzk5tvQJSGlFKUaBVL8GgWR0CVzPJp35erdX2UKGgGaAloD0MIDt3sD1S2cECUhpRSlGgVS/ZoFkdAlc2O+Eh7mnV9lChoBmgJaA9DCJ7qkJthRGxAlIaUUpRoFUvuaBZHQJXN8NZvDP51fZQoaAZoCWgPQwiSeHk6F99xQJSGlFKUaBVNAwFoFkdAlc4SzLOiWXV9lChoBmgJaA9DCB+6oL5lGHJAlIaUUpRoFUvqaBZHQJXP0cCHRCx1fZQoaAZoCWgPQwhZ+PpaF9NwQJSGlFKUaBVL12gWR0CV0B8pkPMCdX2UKGgGaAloD0MITfVk/hEFcECUhpRSlGgVS+JoFkdAldBXGsFMZnV9lChoBmgJaA9DCCieswVEtHJAlIaUUpRoFU10AWgWR0CV0HmVqveQdX2UKGgGaAloD0MInE6y1eWlbkCUhpRSlGgVS+xoFkdAldFvNmlImXV9lChoBmgJaA9DCAMGSZ/WcWNAlIaUUpRoFU3oA2gWR0CV0hyGSIP9dX2UKGgGaAloD0MIMe9xpgkQbkCUhpRSlGgVS+toFkdAldIl7Y02tXV9lChoBmgJaA9DCNkIxOv6F29AlIaUUpRoFU0VAWgWR0CV0oT/ACXAdX2UKGgGaAloD0MI68iRzoBbckCUhpRSlGgVTXkBaBZHQJXTVV/+bVl1fZQoaAZoCWgPQwgDe0ykdMhwQJSGlFKUaBVLxWgWR0CV05ehf0EpdX2UKGgGaAloD0MI0Lnb9dL5b0CUhpRSlGgVS/BoFkdAldOmJJoTPHV9lChoBmgJaA9DCDYGnRB6FHFAlIaUUpRoFUvraBZHQJXUHRBu4w11fZQoaAZoCWgPQwi6E+y/TopwQJSGlFKUaBVNAwFoFkdAldQmMCLde3V9lChoBmgJaA9DCJFGBU624m5AlIaUUpRoFUv7aBZHQJXU1KIznA91fZQoaAZoCWgPQwjLZg5JLepwQJSGlFKUaBVL5GgWR0CV1od+ocaPdX2UKGgGaAloD0MI8rOR6ya0cUCUhpRSlGgVS/toFkdAlda2ACnxa3V9lChoBmgJaA9DCKkz95DwrFlAlIaUUpRoFU3oA2gWR0CV1rarFOwgdX2UKGgGaAloD0MICvfKvNXIcECUhpRSlGgVS/FoFkdAldcKpo9LYnV9lChoBmgJaA9DCG75SEr6JnFAlIaUUpRoFU0BAWgWR0CV1yAbhm5EdX2UKGgGaAloD0MILhwIyQKbbkCUhpRSlGgVS+hoFkdAldehiG34K3V9lChoBmgJaA9DCEz75v4qEHFAlIaUUpRoFUv4aBZHQJXYmEPDpC91fZQoaAZoCWgPQwiv0XKgh3luQJSGlFKUaBVL7mgWR0CV2LkJ8fFKdX2UKGgGaAloD0MI/FQVGoimb0CUhpRSlGgVS+BoFkdAldkdmxt52XV9lChoBmgJaA9DCMYYWMdxa29AlIaUUpRoFUvlaBZHQJXZgfIS13N1fZQoaAZoCWgPQwjiBRGpacVxQJSGlFKUaBVL7mgWR0CV2ampVCHAdX2UKGgGaAloD0MIqi11kNcZcECUhpRSlGgVS+ZoFkdAldn3+IdlunV9lChoBmgJaA9DCKW/l8KDCmNAlIaUUpRoFU3oA2gWR0CV2jggX/HYdX2UKGgGaAloD0MI+RIqODxhbECUhpRSlGgVS/ZoFkdAldpP8Q7LdXV9lChoBmgJaA9DCEg17PdE3HBAlIaUUpRoFUv8aBZHQJXbGKyfL9x1fZQoaAZoCWgPQwj3dktyQNZxQJSGlFKUaBVL3mgWR0CV2/jiXIEKdX2UKGgGaAloD0MIzzKLUOwAcECUhpRSlGgVS9loFkdAldw8jqv/znV9lChoBmgJaA9DCHVZTGx+13BAlIaUUpRoFUv4aBZHQJXcd9iMHbB1fZQoaAZoCWgPQwiTGARWjlhtQJSGlFKUaBVL92gWR0CV3JPAwfyPdX2UKGgGaAloD0MIp60RwTgpcUCUhpRSlGgVTQ0BaBZHQJXdWwW3z+Z1fZQoaAZoCWgPQwjULNDuEDRyQJSGlFKUaBVL4WgWR0CV3eGJvYOEdX2UKGgGaAloD0MIKzBkdasLb0CUhpRSlGgVS9poFkdAld4+JpFkQXV9lChoBmgJaA9DCGjmyTXF8HFAlIaUUpRoFUvSaBZHQJXegMx46fd1fZQoaAZoCWgPQwiIg4QoX+ZwQJSGlFKUaBVLzmgWR0CV3pRceKbbdX2UKGgGaAloD0MItmeWBKggcUCUhpRSlGgVTQQCaBZHQJXe+V5a/yp1fZQoaAZoCWgPQwgnTYOiubRyQJSGlFKUaBVL2GgWR0CV31vqC6H1dX2UKGgGaAloD0MIz4O7s7YScUCUhpRSlGgVS9loFkdAld97JfYzznV9lChoBmgJaA9DCCHkvP8PgHFAlIaUUpRoFU0kAWgWR0CV36IY3vQXdX2UKGgGaAloD0MIvqCFBAyzakCUhpRSlGgVTQUBaBZHQJXgIRdyDI11fZQoaAZoCWgPQwjq501FahVxQJSGlFKUaBVL82gWR0CV4NYvFm4BdX2UKGgGaAloD0MIDTUKSWYzQUCUhpRSlGgVS9ZoFkdAleGmAG0NSnV9lChoBmgJaA9DCKUw73FmtXBAlIaUUpRoFUvuaBZHQJXh5k/bCaZ1fZQoaAZoCWgPQwgEAwgfihhxQJSGlFKUaBVNwQFoFkdAleJRGx2SuHV9lChoBmgJaA9DCD9Tr1sEoG5AlIaUUpRoFUv2aBZHQJXiWx7iQ1d1fZQoaAZoCWgPQwh1cobiTh5yQJSGlFKUaBVL62gWR0CV4w8LronsdX2UKGgGaAloD0MIkWEVb+RycECUhpRSlGgVS+JoFkdAleNdbX6InHV9lChoBmgJaA9DCMC0qE9yr3BAlIaUUpRoFUveaBZHQJXkV3Y+Sr51fZQoaAZoCWgPQwgkQiPYOLJwQJSGlFKUaBVL9WgWR0CV5HrZ8KG+dX2UKGgGaAloD0MI5llJKz65cUCUhpRSlGgVS/poFkdAleV7f+CK8HV9lChoBmgJaA9DCJnXEYfsjm9AlIaUUpRoFUvzaBZHQJXlpRMvh611fZQoaAZoCWgPQwgUQDGypA9wQJSGlFKUaBVL6mgWR0CV5gCT2WY4dX2UKGgGaAloD0MIuoRDbzH+cECUhpRSlGgVTRABaBZHQJXmQVwgkkd1fZQoaAZoCWgPQwjDgCVXsaBtQJSGlFKUaBVL3GgWR0CV5nyauwHJdX2UKGgGaAloD0MIvD0IATkncUCUhpRSlGgVTVcBaBZHQJXm//HYHxB1fZQoaAZoCWgPQwi0OjlD8ThwQJSGlFKUaBVL2GgWR0CV54ISUTtcdX2UKGgGaAloD0MIbEPFOP+bbkCUhpRSlGgVS/FoFkdAlefpMg2ZRnV9lChoBmgJaA9DCKuzWmAPknBAlIaUUpRoFUvnaBZHQJXpGjesPrh1fZQoaAZoCWgPQwh2HD9UmhJvQJSGlFKUaBVNBwFoFkdAlekvlIVdonV9lChoBmgJaA9DCFCOAkSBNHJAlIaUUpRoFUvDaBZHQJXprXJ5miB1fZQoaAZoCWgPQwgzUYTUbUluQJSGlFKUaBVL/GgWR0CV6gLB9Cu2dX2UKGgGaAloD0MI61T5ntEMcECUhpRSlGgVS+BoFkdAlepWM4tHx3V9lChoBmgJaA9DCJNxjGSP0DlAlIaUUpRoFUvYaBZHQJXrWTFERap1fZQoaAZoCWgPQwgtliL5StNvQJSGlFKUaBVL02gWR0CV68bFjurqdX2UKGgGaAloD0MIFqJD4IiRcECUhpRSlGgVS+xoFkdAle0R4IKMN3V9lChoBmgJaA9DCJUsJ6F0x21AlIaUUpRoFUvjaBZHQJXuA2sJY1Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-lunarlander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c83bd0529c850669a749224ce67359d663762d5ac9537b69db9da66988ad680b
|
3 |
+
size 147113
|
ppo-lunarlander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-lunarlander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f0efcda60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f0efcdaf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f0efcdb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f0efcdc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7f0efcdca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7f0efcdd30>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f0efcddc0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7f0efcde50>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f0efcdee0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f0efcdf70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f0efd1040>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7f0efcc2a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670966366701666669,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOHQj6UOaW8cL/GOieY+7h9axS+luwQugAAgD8AAIA/2vLXPUgrhrqrFRYyDO4zL0hRojrY2CazAACAPwAAgD+zZuC99rg4ulclHbpqWvi4cTFwu+1aQzkAAIA/AACAP7NuRr68zbk+cv0cPsNRgb4ymUe9xoobPgAAAAAAAAAAzaucvcWHhzySOdc9yVUDvtOnID0nGg49AAAAAAAAAAAmvh0+fRQaPkB+jb3Q4Fe+MmaYPKx+Cj0AAAAAAAAAAABqPz7fBMQ80sscup6hwbg2I1o+yzFrOQAAgD8AAIA/8whCPjSo3ry2ugg6XJqYuB99RL77Nz65AACAPwAAgD8aZKA9wteJP35jXz7Glhq/oFm6PResGj0AAAAAAAAAAObqVr0Tkyg/R7uFPLa5yb4W/pu8tiVmOwAAAAAAAAAAZiesPMlaFT1iKKQ9ilgevrICKj0bXPU8AAAAAAAAAACtNU6+AcnePa3Iaz1MbYq+8BD8uhjrib0AAAAAAAAAAPPYOT4bnYe8cjckPK4mh7rprei9k9JYuwAAgD8AAIA/zQYBvFBPsj8/7g++x3VYvjDjxLsUsbK9AAAAAAAAAABAAs+9FNSuuqT0ED65edm1S8pBOvo1y7QAAIA/AAAAAA1n1b08mAc+orJlPgqZgb5oXrQ9EixRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9GxWfa7MY0CUhpRSlIwBbJRN6AOMAXSUR0CVv8fgaWHDdX2UKGgGaAloD0MIkXu6uuNhbkCUhpRSlGgVS+RoFkdAlb/HY150KnV9lChoBmgJaA9DCIuNeR2xN3FAlIaUUpRoFUvWaBZHQJXAYgNgBtF1fZQoaAZoCWgPQwh4Y0FhkKlwQJSGlFKUaBVL5mgWR0CVwO09yLhrdX2UKGgGaAloD0MIIt46/3YlcUCUhpRSlGgVS+xoFkdAlcELQ5WBBnV9lChoBmgJaA9DCNCaH39pPm5AlIaUUpRoFUvTaBZHQJXBHEehf0F1fZQoaAZoCWgPQwivmXyzTeduQJSGlFKUaBVL+GgWR0CVwkavRqoIdX2UKGgGaAloD0MIG2K85lVpYUCUhpRSlGgVTegDaBZHQJXCh99c8kl1fZQoaAZoCWgPQwiYUSy3NB5xQJSGlFKUaBVL8mgWR0CVw8GJvYOEdX2UKGgGaAloD0MIyy+DMSIbcECUhpRSlGgVS/5oFkdAlcQXJYDDCXV9lChoBmgJaA9DCIodjUP9u21AlIaUUpRoFUvpaBZHQJXEKb5M10l1fZQoaAZoCWgPQwhq+uyA6/luQJSGlFKUaBVL1GgWR0CVxKRYzSCwdX2UKGgGaAloD0MIURVT6SfVcECUhpRSlGgVS95oFkdAlcWHh0hePnV9lChoBmgJaA9DCEMaFTgZ1nBAlIaUUpRoFUv5aBZHQJXGOTvAoG91fZQoaAZoCWgPQwjn/1VHDmJtQJSGlFKUaBVL5GgWR0CVxmubqhUSdX2UKGgGaAloD0MIBYcXRGSucECUhpRSlGgVS9VoFkdAlcbUIkZ75XV9lChoBmgJaA9DCKDf92/ecnJAlIaUUpRoFUvaaBZHQJXG5e4TbnJ1fZQoaAZoCWgPQwiVLCehtJNxQJSGlFKUaBVNEwFoFkdAlccKneizs3V9lChoBmgJaA9DCIULeQQ3OHFAlIaUUpRoFUv0aBZHQJXHcB+4LCx1fZQoaAZoCWgPQwggzy7fOkVxQJSGlFKUaBVL82gWR0CVyNfwZwXJdX2UKGgGaAloD0MIBYnt7gE3cUCUhpRSlGgVS81oFkdAlclZwS8J2XV9lChoBmgJaA9DCFVOe0rOa3BAlIaUUpRoFUvYaBZHQJXKDF2mpER1fZQoaAZoCWgPQwj8HB8tzlJwQJSGlFKUaBVNGAFoFkdAlcomPo3aSXV9lChoBmgJaA9DCHWr56R3PmxAlIaUUpRoFUv1aBZHQJXKyckMTex1fZQoaAZoCWgPQwhi1ouhHEpuQJSGlFKUaBVL42gWR0CVyt8an753dX2UKGgGaAloD0MID167tOExckCUhpRSlGgVS9xoFkdAlcuB8MNMG3V9lChoBmgJaA9DCIwTX+0oFHFAlIaUUpRoFUviaBZHQJXM8pYs/Y91fZQoaAZoCWgPQwjwarkzk5tvQJSGlFKUaBVL8GgWR0CVzPJp35erdX2UKGgGaAloD0MIDt3sD1S2cECUhpRSlGgVS/ZoFkdAlc2O+Eh7mnV9lChoBmgJaA9DCJ7qkJthRGxAlIaUUpRoFUvuaBZHQJXN8NZvDP51fZQoaAZoCWgPQwiSeHk6F99xQJSGlFKUaBVNAwFoFkdAlc4SzLOiWXV9lChoBmgJaA9DCB+6oL5lGHJAlIaUUpRoFUvqaBZHQJXP0cCHRCx1fZQoaAZoCWgPQwhZ+PpaF9NwQJSGlFKUaBVL12gWR0CV0B8pkPMCdX2UKGgGaAloD0MITfVk/hEFcECUhpRSlGgVS+JoFkdAldBXGsFMZnV9lChoBmgJaA9DCCieswVEtHJAlIaUUpRoFU10AWgWR0CV0HmVqveQdX2UKGgGaAloD0MInE6y1eWlbkCUhpRSlGgVS+xoFkdAldFvNmlImXV9lChoBmgJaA9DCAMGSZ/WcWNAlIaUUpRoFU3oA2gWR0CV0hyGSIP9dX2UKGgGaAloD0MIMe9xpgkQbkCUhpRSlGgVS+toFkdAldIl7Y02tXV9lChoBmgJaA9DCNkIxOv6F29AlIaUUpRoFU0VAWgWR0CV0oT/ACXAdX2UKGgGaAloD0MI68iRzoBbckCUhpRSlGgVTXkBaBZHQJXTVV/+bVl1fZQoaAZoCWgPQwgDe0ykdMhwQJSGlFKUaBVLxWgWR0CV05ehf0EpdX2UKGgGaAloD0MI0Lnb9dL5b0CUhpRSlGgVS/BoFkdAldOmJJoTPHV9lChoBmgJaA9DCDYGnRB6FHFAlIaUUpRoFUvraBZHQJXUHRBu4w11fZQoaAZoCWgPQwi6E+y/TopwQJSGlFKUaBVNAwFoFkdAldQmMCLde3V9lChoBmgJaA9DCJFGBU624m5AlIaUUpRoFUv7aBZHQJXU1KIznA91fZQoaAZoCWgPQwjLZg5JLepwQJSGlFKUaBVL5GgWR0CV1od+ocaPdX2UKGgGaAloD0MI8rOR6ya0cUCUhpRSlGgVS/toFkdAlda2ACnxa3V9lChoBmgJaA9DCKkz95DwrFlAlIaUUpRoFU3oA2gWR0CV1rarFOwgdX2UKGgGaAloD0MICvfKvNXIcECUhpRSlGgVS/FoFkdAldcKpo9LYnV9lChoBmgJaA9DCG75SEr6JnFAlIaUUpRoFU0BAWgWR0CV1yAbhm5EdX2UKGgGaAloD0MILhwIyQKbbkCUhpRSlGgVS+hoFkdAldehiG34K3V9lChoBmgJaA9DCEz75v4qEHFAlIaUUpRoFUv4aBZHQJXYmEPDpC91fZQoaAZoCWgPQwiv0XKgh3luQJSGlFKUaBVL7mgWR0CV2LkJ8fFKdX2UKGgGaAloD0MI/FQVGoimb0CUhpRSlGgVS+BoFkdAldkdmxt52XV9lChoBmgJaA9DCMYYWMdxa29AlIaUUpRoFUvlaBZHQJXZgfIS13N1fZQoaAZoCWgPQwjiBRGpacVxQJSGlFKUaBVL7mgWR0CV2ampVCHAdX2UKGgGaAloD0MIqi11kNcZcECUhpRSlGgVS+ZoFkdAldn3+IdlunV9lChoBmgJaA9DCKW/l8KDCmNAlIaUUpRoFU3oA2gWR0CV2jggX/HYdX2UKGgGaAloD0MI+RIqODxhbECUhpRSlGgVS/ZoFkdAldpP8Q7LdXV9lChoBmgJaA9DCEg17PdE3HBAlIaUUpRoFUv8aBZHQJXbGKyfL9x1fZQoaAZoCWgPQwj3dktyQNZxQJSGlFKUaBVL3mgWR0CV2/jiXIEKdX2UKGgGaAloD0MIzzKLUOwAcECUhpRSlGgVS9loFkdAldw8jqv/znV9lChoBmgJaA9DCHVZTGx+13BAlIaUUpRoFUv4aBZHQJXcd9iMHbB1fZQoaAZoCWgPQwiTGARWjlhtQJSGlFKUaBVL92gWR0CV3JPAwfyPdX2UKGgGaAloD0MIp60RwTgpcUCUhpRSlGgVTQ0BaBZHQJXdWwW3z+Z1fZQoaAZoCWgPQwjULNDuEDRyQJSGlFKUaBVL4WgWR0CV3eGJvYOEdX2UKGgGaAloD0MIKzBkdasLb0CUhpRSlGgVS9poFkdAld4+JpFkQXV9lChoBmgJaA9DCGjmyTXF8HFAlIaUUpRoFUvSaBZHQJXegMx46fd1fZQoaAZoCWgPQwiIg4QoX+ZwQJSGlFKUaBVLzmgWR0CV3pRceKbbdX2UKGgGaAloD0MItmeWBKggcUCUhpRSlGgVTQQCaBZHQJXe+V5a/yp1fZQoaAZoCWgPQwgnTYOiubRyQJSGlFKUaBVL2GgWR0CV31vqC6H1dX2UKGgGaAloD0MIz4O7s7YScUCUhpRSlGgVS9loFkdAld97JfYzznV9lChoBmgJaA9DCCHkvP8PgHFAlIaUUpRoFU0kAWgWR0CV36IY3vQXdX2UKGgGaAloD0MIvqCFBAyzakCUhpRSlGgVTQUBaBZHQJXgIRdyDI11fZQoaAZoCWgPQwjq501FahVxQJSGlFKUaBVL82gWR0CV4NYvFm4BdX2UKGgGaAloD0MIDTUKSWYzQUCUhpRSlGgVS9ZoFkdAleGmAG0NSnV9lChoBmgJaA9DCKUw73FmtXBAlIaUUpRoFUvuaBZHQJXh5k/bCaZ1fZQoaAZoCWgPQwgEAwgfihhxQJSGlFKUaBVNwQFoFkdAleJRGx2SuHV9lChoBmgJaA9DCD9Tr1sEoG5AlIaUUpRoFUv2aBZHQJXiWx7iQ1d1fZQoaAZoCWgPQwh1cobiTh5yQJSGlFKUaBVL62gWR0CV4w8LronsdX2UKGgGaAloD0MIkWEVb+RycECUhpRSlGgVS+JoFkdAleNdbX6InHV9lChoBmgJaA9DCMC0qE9yr3BAlIaUUpRoFUveaBZHQJXkV3Y+Sr51fZQoaAZoCWgPQwgkQiPYOLJwQJSGlFKUaBVL9WgWR0CV5HrZ8KG+dX2UKGgGaAloD0MI5llJKz65cUCUhpRSlGgVS/poFkdAleV7f+CK8HV9lChoBmgJaA9DCJnXEYfsjm9AlIaUUpRoFUvzaBZHQJXlpRMvh611fZQoaAZoCWgPQwgUQDGypA9wQJSGlFKUaBVL6mgWR0CV5gCT2WY4dX2UKGgGaAloD0MIuoRDbzH+cECUhpRSlGgVTRABaBZHQJXmQVwgkkd1fZQoaAZoCWgPQwjDgCVXsaBtQJSGlFKUaBVL3GgWR0CV5nyauwHJdX2UKGgGaAloD0MIvD0IATkncUCUhpRSlGgVTVcBaBZHQJXm//HYHxB1fZQoaAZoCWgPQwi0OjlD8ThwQJSGlFKUaBVL2GgWR0CV54ISUTtcdX2UKGgGaAloD0MIbEPFOP+bbkCUhpRSlGgVS/FoFkdAlefpMg2ZRnV9lChoBmgJaA9DCKuzWmAPknBAlIaUUpRoFUvnaBZHQJXpGjesPrh1fZQoaAZoCWgPQwh2HD9UmhJvQJSGlFKUaBVNBwFoFkdAlekvlIVdonV9lChoBmgJaA9DCFCOAkSBNHJAlIaUUpRoFUvDaBZHQJXprXJ5miB1fZQoaAZoCWgPQwgzUYTUbUluQJSGlFKUaBVL/GgWR0CV6gLB9Cu2dX2UKGgGaAloD0MI61T5ntEMcECUhpRSlGgVS+BoFkdAlepWM4tHx3V9lChoBmgJaA9DCJNxjGSP0DlAlIaUUpRoFUvYaBZHQJXrWTFERap1fZQoaAZoCWgPQwgtliL5StNvQJSGlFKUaBVL02gWR0CV68bFjurqdX2UKGgGaAloD0MIFqJD4IiRcECUhpRSlGgVS+xoFkdAle0R4IKMN3V9lChoBmgJaA9DCJUsJ6F0x21AlIaUUpRoFUvjaBZHQJXuA2sJY1Z1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-lunarlander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd4bf1e11fc024ef76fad13d7e1d4bc83674abfe06c8dfc45002f736e744f126
|
3 |
+
size 87929
|
ppo-lunarlander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfd6e9350071846579478f51ffb439c7afc5bd175b8cc3e615f959c672e2a52b
|
3 |
+
size 43201
|
ppo-lunarlander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (221 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.15275288057268, "std_reward": 71.26512728790668, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T21:52:57.976087"}
|