bhaskars113 commited on
Commit
6fe43ab
1 Parent(s): f25028f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ datasets:
10
+ - go_emotions
11
+ metrics:
12
+ - accuracy
13
+ widget:
14
+ - text: Curious as to why he's been passed up so many times now.
15
+ - text: I think you mean the announcement
16
+ - text: try to attract the guy that i like. other than that i love gaming drawing
17
+ writing and watching tv.
18
+ - text: I thought that phrase was only used for memes now lol at least that's what
19
+ I got from Vic deals
20
+ - text: 'Fantastic read, thanks for the insights! '
21
+ pipeline_tag: text-classification
22
+ inference: false
23
+ ---
24
+
25
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
26
+
27
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
28
+
29
+ The model has been trained using an efficient few-shot learning technique that involves:
30
+
31
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
32
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
33
+
34
+ ## Model Details
35
+
36
+ ### Model Description
37
+ - **Model Type:** SetFit
38
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
39
+ - **Classification head:** a OneVsRestClassifier instance
40
+ - **Maximum Sequence Length:** 512 tokens
41
+ <!-- - **Number of Classes:** Unknown -->
42
+ - **Training Dataset:** [go_emotions](https://huggingface.co/datasets/go_emotions)
43
+ <!-- - **Language:** Unknown -->
44
+ <!-- - **License:** Unknown -->
45
+
46
+ ### Model Sources
47
+
48
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
49
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
50
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
51
+
52
+ ## Uses
53
+
54
+ ### Direct Use for Inference
55
+
56
+ First install the SetFit library:
57
+
58
+ ```bash
59
+ pip install setfit
60
+ ```
61
+
62
+ Then you can load this model and run inference.
63
+
64
+ ```python
65
+ from setfit import SetFitModel
66
+
67
+ # Download from the 🤗 Hub
68
+ model = SetFitModel.from_pretrained("bhaskars113/go-emotions-multilabel")
69
+ # Run inference
70
+ preds = model("I think you mean the announcement")
71
+ ```
72
+
73
+ <!--
74
+ ### Downstream Use
75
+
76
+ *List how someone could finetune this model on their own dataset.*
77
+ -->
78
+
79
+ <!--
80
+ ### Out-of-Scope Use
81
+
82
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
83
+ -->
84
+
85
+ <!--
86
+ ## Bias, Risks and Limitations
87
+
88
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
89
+ -->
90
+
91
+ <!--
92
+ ### Recommendations
93
+
94
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
95
+ -->
96
+
97
+ ## Training Details
98
+
99
+ ### Training Set Metrics
100
+ | Training set | Min | Median | Max |
101
+ |:-------------|:----|:--------|:----|
102
+ | Word count | 1 | 13.6060 | 30 |
103
+
104
+ ### Training Hyperparameters
105
+ - batch_size: (16, 16)
106
+ - num_epochs: (1, 1)
107
+ - max_steps: -1
108
+ - sampling_strategy: oversampling
109
+ - num_iterations: 20
110
+ - body_learning_rate: (2e-05, 2e-05)
111
+ - head_learning_rate: 2e-05
112
+ - loss: CosineSimilarityLoss
113
+ - distance_metric: cosine_distance
114
+ - margin: 0.25
115
+ - end_to_end: False
116
+ - use_amp: False
117
+ - warmup_proportion: 0.1
118
+ - seed: 42
119
+ - eval_max_steps: -1
120
+ - load_best_model_at_end: False
121
+
122
+ ### Training Results
123
+ | Epoch | Step | Training Loss | Validation Loss |
124
+ |:------:|:----:|:-------------:|:---------------:|
125
+ | 0.0004 | 1 | 0.3873 | - |
126
+ | 0.0223 | 50 | 0.2243 | - |
127
+ | 0.0446 | 100 | 0.2305 | - |
128
+ | 0.0670 | 150 | 0.2297 | - |
129
+ | 0.0893 | 200 | 0.2758 | - |
130
+ | 0.1116 | 250 | 0.2197 | - |
131
+ | 0.1339 | 300 | 0.1984 | - |
132
+ | 0.1562 | 350 | 0.1729 | - |
133
+ | 0.1786 | 400 | 0.1244 | - |
134
+ | 0.2009 | 450 | 0.164 | - |
135
+ | 0.2232 | 500 | 0.1587 | - |
136
+ | 0.2455 | 550 | 0.2272 | - |
137
+ | 0.2679 | 600 | 0.3367 | - |
138
+ | 0.2902 | 650 | 0.1715 | - |
139
+ | 0.3125 | 700 | 0.2213 | - |
140
+ | 0.3348 | 750 | 0.2394 | - |
141
+ | 0.3571 | 800 | 0.1275 | - |
142
+ | 0.3795 | 850 | 0.1919 | - |
143
+ | 0.4018 | 900 | 0.143 | - |
144
+ | 0.4241 | 950 | 0.2431 | - |
145
+ | 0.4464 | 1000 | 0.1747 | - |
146
+ | 0.4688 | 1050 | 0.1567 | - |
147
+ | 0.4911 | 1100 | 0.194 | - |
148
+ | 0.5134 | 1150 | 0.1895 | - |
149
+ | 0.5357 | 1200 | 0.1601 | - |
150
+ | 0.5580 | 1250 | 0.1042 | - |
151
+ | 0.5804 | 1300 | 0.0553 | - |
152
+ | 0.6027 | 1350 | 0.1614 | - |
153
+ | 0.625 | 1400 | 0.1854 | - |
154
+ | 0.6473 | 1450 | 0.1259 | - |
155
+ | 0.6696 | 1500 | 0.138 | - |
156
+ | 0.6920 | 1550 | 0.2181 | - |
157
+ | 0.7143 | 1600 | 0.1144 | - |
158
+ | 0.7366 | 1650 | 0.1987 | - |
159
+ | 0.7589 | 1700 | 0.0859 | - |
160
+ | 0.7812 | 1750 | 0.1665 | - |
161
+ | 0.8036 | 1800 | 0.1628 | - |
162
+ | 0.8259 | 1850 | 0.2296 | - |
163
+ | 0.8482 | 1900 | 0.1892 | - |
164
+ | 0.8705 | 1950 | 0.2033 | - |
165
+ | 0.8929 | 2000 | 0.1507 | - |
166
+ | 0.9152 | 2050 | 0.1592 | - |
167
+ | 0.9375 | 2100 | 0.1077 | - |
168
+ | 0.9598 | 2150 | 0.1415 | - |
169
+ | 0.9821 | 2200 | 0.1561 | - |
170
+
171
+ ### Framework Versions
172
+ - Python: 3.10.12
173
+ - SetFit: 1.0.3
174
+ - Sentence Transformers: 2.7.0
175
+ - Transformers: 4.40.0
176
+ - PyTorch: 2.2.1+cu121
177
+ - Datasets: 2.19.0
178
+ - Tokenizers: 0.19.1
179
+
180
+ ## Citation
181
+
182
+ ### BibTeX
183
+ ```bibtex
184
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
185
+ doi = {10.48550/ARXIV.2209.11055},
186
+ url = {https://arxiv.org/abs/2209.11055},
187
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
188
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
189
+ title = {Efficient Few-Shot Learning Without Prompts},
190
+ publisher = {arXiv},
191
+ year = {2022},
192
+ copyright = {Creative Commons Attribution 4.0 International}
193
+ }
194
+ ```
195
+
196
+ <!--
197
+ ## Glossary
198
+
199
+ *Clearly define terms in order to be accessible across audiences.*
200
+ -->
201
+
202
+ <!--
203
+ ## Model Card Authors
204
+
205
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Contact
210
+
211
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
212
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb2f4fb1666a9c66ad2557728f9ad6f07cce7b759124d5db8975c69a15bfbf0
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f5077127ccaad1746e4ef85905f6ccbed087fa7472cca902aecb964d3dde811
3
+ size 182436
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff