--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/paraphrase-mpnet-base-v2 metrics: - accuracy widget: - text: Anyone 170 or below that takes Wegovy? Well it is, Ozempic and Wegovy are actually the same drug. So if you are taking Wegovy, it is affecting your insulin and glucose. I was on Trulicity, insurance made me switch to wegovy. - text: New Ozempic and Wegovy side effects come to light - After I stopped taking it I developed Gallbladder disease and Pancreatitis - text: 'The beginning of my Semaglutide journey! ???? #semaglutide #ozempic #wegovy #weightloss #health #prediabetes #semaglutideweightloss #change' - text: I am on victoza. It works well for me. Ozempic made me sick so my doctor placed me back on victoza since it was working. I do want to mention that the side effects of victoza re the same as Ozempic. That includes thyroid issues. - text: What's the cheapest way possible to get semaglutide? I'm currently taking 2000mg of Metformin with compounded semaglutide with no issues. I have PCOS and not Type 2, so I sadly don't qualify for Ozempic through insurance. pipeline_tag: text-classification inference: true --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 |