File size: 10,226 Bytes
9677b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: I am hoping one of you fine cocktail connoisseurs can help me out. I am predominately
    a whisk(e)y/bourbon drinker. I love rye and the spice notes in it. I don’t find
    myself drinking much whiskey in summertime just due to my lack of imagination
    with it. I lean towards Jalapeño margaritas or Mezcal drinks to get the spicy
    notes. Does anyone have or recommend a good “spicy” Whiskey version or summertime
    cocktail? Thanks in advance to all of you!
- text: 'Something simple for the glorious weather we are having.  Irish Mule. JJ
    Corry The Hanson,Ginger Beer and a Lime. I found the ginger notes from The Hanson
    really complemented the Ginger Beer and lime. Sláinte #whiskey #cocktail #jjcorry
    #ginger #beer #lime #tasty #drink #drinkaware #sláinte'
- text: Trying the Jameson Black Barrel today. Wow! Decidedly different from their
    regular whiskey and I like it!!!!! So smooth. I might have found a second favorite
    ( Basil-Hayden bourbon being my first. Crazy when the cheaper stuff is actually
    better than some of the more expensive. Although it wasn’t  cheap”, it was more
    than the regular Jameson but affordable
- text: lol don’t we all. What is your favorite drink? I’m ok crown royal with peach
    and sweet tea lol my friend got me on it
- text: a hot toddy is a generalized Midwestern us drink.... it's used mostly as a
    medicine... recipes very but the general one that I know of at least is hot tea,
    whiskey, and honey
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'Jim bean fire is my fireball replacement  10x better than fireball.'</li><li>"I drank a local Bourbon last night to celebrate National Bourbon day. I've been trying to get into whiskey for a few years now and am starting to appreciate it more than I used to. But I just discovered Islay Scotch and am in love. I think i'd had Scotch Whisky in the past and didn't think much of it. And I'm just at Ardbeg and Laphroig so far"</li><li>'makers mark is damn good whisky though makes want a whisky sour now'</li></ul>                                                                                                                                                                                                                                                                                                                                                                         |
| 0     | <ul><li>"I've always liked Jack Daniels mixed with tea, punch, lemonade or coke. Great drink on a hot summers day."</li><li>"I usually use rye as my preference (I like the slightly more spicy flavor), but to be honest I'll use either depending on what is available and have also made a good one using a smokey peated whisky. Good use of Wild Turkey which is a great whiskey. Worth going that little bit further and getting their 101 for bourbon or rye as the extra proof makes it so good for cocktails. Luxardo cherries are also so worth the money. A variation on the cocktail I love that was inspired by an Amsterdam restaurant is to use popcorn flavoured syrup and chocolate bitters. The chocolate and the popcorn really work well together."</li><li>'lol don’t we all. What is your favorite drink? I’m ok crown royal with peach and sweet tea lol my friend got me on it'</li></ul> |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhaskars113/whiskey-recipe-model")
# Run inference
preds = model("lol don’t we all. What is your favorite drink? I’m ok crown royal with peach and sweet tea lol my friend got me on it")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 12  | 57.8438 | 152 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 16                    |
| 1     | 16                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0125 | 1    | 0.1981        | -               |
| 0.625  | 50   | 0.0005        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->