File size: 6,731 Bytes
2821ef8 bbbd7a0 2821ef8 bbbd7a0 9d79541 bbbd7a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
license: openrail
datasets:
- bigcode/the-stack
language:
- code
programming_language:
- Java
- JavaScript
- Python
pipeline_tag: text-generation
inference: false
model-index:
- name: SantaCoder
results:
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (Python)
metrics:
- name: pass@1
type: pass@1
value: 0.18
verified: false
- name: pass@10
type: pass@10
value: 0.29
verified: false
- name: pass@100
type: pass@100
value: 0.49
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Python)
metrics:
- name: pass@1
type: pass@1
value: 0.35
verified: false
- name: pass@10
type: pass@10
value: 0.58
verified: false
- name: pass@100
type: pass@100
value: 0.77
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 0.16
verified: false
- name: pass@10
type: pass@10
value: 0.27
verified: false
- name: pass@100
type: pass@100
value: 0.47
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Javascript)
metrics:
- name: pass@1
type: pass@1
value: 0.28
verified: false
- name: pass@10
type: pass@10
value: 0.51
verified: false
- name: pass@100
type: pass@100
value: 0.70
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (Java)
metrics:
- name: pass@1
type: pass@1
value: 0.15
verified: false
- name: pass@10
type: pass@10
value: 0.26
verified: false
- name: pass@100
type: pass@100
value: 0.41
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Java)
metrics:
- name: pass@1
type: pass@1
value: 0.28
verified: false
- name: pass@10
type: pass@10
value: 0.44
verified: false
- name: pass@100
type: pass@100
value: 0.59
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval FIM (Python)
metrics:
- name: single_line
type: exact_match
value: 0.44
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval FIM (Java)
metrics:
- name: single_line
type: exact_match
value: 0.62
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval FIM (JavaScript)
metrics:
- name: single_line
type: exact_match
value: 0.60
verified: false
- task:
type: text-generation
dataset:
type: code_x_glue_ct_code_to_text
name: CodeXGLUE code-to-text (Python)
metrics:
- name: BLEU
type: bleu
value: 18.13
verified: false
---
# SantaCoder
![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/banner.png)
Play with the model on the [SantaCoder Space Demo](https://huggingface.co/spaces/bigcode/santacoder-demo).
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [License](#license)
6. [Citation](#citation)
# Model Summary
This is the Megatron-version of [SantaCoder](https://huggingface.co/bigcode/santacoder).
We refer the reader to the [SantaCoder model page](https://huggingface.co/bigcode/santacoder) for full documentation about this model
- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org](www.bigcode-project.org)
- **Paper:** [🎅SantaCoder: Don't reach for the stars!🌟](https://t.co/YV3pzUbYOr)
- **Point of Contact:** [[email protected]](mailto:[email protected])
- **Languages:** Python, Java, and JavaScript
There are two versions (branches) of the model:
* `main`: Uses the `gpt_bigcode` model. [Requires the bigcode fork of transformers](https://github.com/bigcode-project/transformers).
* `main_custom`: Packaged with its modeling code. Requires `transformers>=4.27`.
Alternatively, it can run on older versions by setting the configuration parameter `activation_function = "gelu_pytorch_tanh"`.
# Use
## Intended use
The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
You should phrase commands like they occur in source code such as comments (e.g. `# the following function computes the sqrt`) or write a function signature and docstring and let the model complete the function body.
### Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/santacoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
# Limitations
The model has been trained on source code in Python, Java, and JavaScript. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits.
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 600K
- **Pretraining tokens:** 236 billion
- **Precision:** float16
## Hardware
- **GPUs:** 96 Tesla V100
- **Training time:** 6.2 days
- **Total FLOPS:** 2.1 x 10e21
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# License
The model is licenses under the CodeML Open RAIL-M v0.1 license. You can find the full license [here](https://huggingface.co/spaces/bigcode/license).
|