File size: 2,892 Bytes
14e6c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/commitpackft
- Muennighoff/oasst-octopack
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: OctoCoder
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Python
metrics:
- name: pass@1
type: pass@1
value: 46.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize JavaScript
metrics:
- name: pass@1
type: pass@1
value: 39.2
verified: false
---
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)
# OctoCoder
Play with the model on the [TODO Playground](https://huggingface.co/spaces/bigcode/bigcode-playground).
## Table of Contents
1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)
## Model Summary
OctoCoder is ...
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack)
- **Paper:** [TODO]()
- **Languages:** 80+ Programming languages
## Use
### Intended use
The model follows instructions provided in the input. We recommend prefacing your input with "Question: " and finishing with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:"
**Feel free to share your generations in the Community tab!**
### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/octocoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Steps:** 250k pretraining & TODO instruction tuning
- **Pretraining tokens:** 1 trillion pretraining & TODO instruction tuning
- **Precision:** bfloat16
## Hardware
- **Pretraining:**
- **GPUs:** 512 Tesla A100
- **Training time:** 24 days
- **Instruction tuning:**
- **GPUs:** TODO Tesla A100
- **Training time:** TODO days
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) & TODO
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
TODO |