File size: 9,474 Bytes
f6390d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and Hugging Face Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Custom GPT-2 configuration"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from enum import Enum

from transformers import PreTrainedTokenizer, TensorType, is_torch_available

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
from transformers.utils import logging


logger = logging.get_logger(__name__)

GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
    "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
    "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
    "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
    "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
}

MULTI_HEAD = "multihead"
MULTI_QUERY = "multiquery"


class GPT2CustomConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
    instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the GPT-2
    [gpt2](https://huggingface.co/gpt2) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50257):
            Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
        n_positions (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        summary_type (`string`, *optional*, defaults to `"cls_index"`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in for the multiple choice head in
            [`GPT2DoubleHeadsModel`].

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
            [`TFGPT2DoubleHeadsModel`].

            The dropout ratio to be used after the projection and activation.
        scale_attn_weights (`bool`, *optional*, defaults to `True`):
            Scale attention weights by dividing by sqrt(head_dim)..
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
            Whether to additionally scale attention weights by `1 / layer_idx + 1`.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
            Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
            dot-product/softmax to float() when training with mixed precision.

    Example:

    ```python
    >>> from transformers import GPT2Config, GPT2Model

    >>> # Initializing a GPT2 configuration
    >>> configuration = GPT2Config()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = GPT2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "gpt2"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "hidden_size": "n_embd",
        "max_position_embeddings": "n_positions",
        "num_attention_heads": "n_head",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
        self,
        vocab_size=50257,
        n_positions=1024,
        n_embd=768,
        n_layer=12,
        n_head=12,
        n_inner=None,
        activation_function="gelu_new",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        summary_type="cls_index",
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        scale_attn_weights=True,
        use_cache=True,
        bos_token_id=50256,
        eos_token_id=50256,
        scale_attn_by_inverse_layer_idx=False,
        reorder_and_upcast_attn=False,
        attention_head_type=MULTI_HEAD,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_inner = n_inner
        self.activation_function = activation_function
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_first_dropout = summary_first_dropout
        self.summary_proj_to_labels = summary_proj_to_labels
        self.scale_attn_weights = scale_attn_weights
        self.use_cache = use_cache
        self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
        self.reorder_and_upcast_attn = reorder_and_upcast_attn
        self.attention_head_type = attention_head_type
        # assert attention_head_type in [AttentionType.MULTI_HEAD, AttentionType.MULTI_QUERY]
        assert attention_head_type in [MULTI_HEAD, MULTI_QUERY]

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)