File size: 1,502 Bytes
d12edac 116e812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: mit
---
```
!pip list
!pip install matplotlib
!pip install --no-build-isolation scikit-learn
!pip install numpy scipy cython
!pip install mxnet
!pip install opencv-python
!pip install numpy==1.23.5
!pip install mxnet
import mxnet as mx
from mxnet import recordio
import matplotlib.pyplot as plt
import cv2
import os
path_imgidx = 'train.idx' # path to train.rec
path_imgrec = 'train.rec' # path to train.idx
imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
i = 0
while True:
try:
print(i)
header, s = recordio.unpack(imgrec.read_idx(i+1))
#print(str(header.label))
#img = np.array(mx.image.imdecode(s))
img = mx.image.imdecode(s).asnumpy()
#print(type(img))
path = os.path.join('images',str(header.label))
if not os.path.exists(path):
os.makedirs(path)
path = os.path.join(path,str(i))
#fig = plt.figure(frameon=False)
#fig.set_size_inches(124,124)
#ax = plt.Axes(fig, [0., 0., 1., 1.])
#ax.set_axis_off()
#fig.add_axes(ax)
#ax.imshow(img, aspect='auto')
#dpi=1
#fname= str(i)+'jpg'
#fig.savefig(fname, dpi)
#plt.savefig(path+'.jpg',bbox_inches='tight',pad_inches=0)
(b,g,r)=cv2.split(img)
img = cv2.merge([r,g,b])
#w,h = img.size
#print((img.shape))
cv2.imwrite(path+'.jpg',img)
i += 1
except EOFError:
break
# 1~ 2369931.jpg 17gb
``` |