Zero-Shot Image Classification
Transformers
Safetensors
clip
Inference Endpoints
Jsonwu commited on
Commit
9520f8f
1 Parent(s): 26bfa9b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -190
README.md CHANGED
@@ -1,199 +1,141 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - biglab/jitteredwebsites-merged-224-paraphrased
6
+ - biglab/jitteredwebsites-merged-224-paraphrased-paired
7
+ - biglab/uiclip_human_data_hf
8
+ base_model:
9
+ - openai/clip-vit-base-patch32
10
  ---
11
 
12
  # Model Card for Model ID
13
 
14
+ UIClip is a model designed to quantify the design quality and releveance of a user interface (UI) screenshot given a textual description.
 
 
 
 
15
 
16
  ### Model Description
17
 
18
+ UIClip is a model designed to quantify the design quality and releveance of a user interface (UI) screenshot given a textual description.
19
+ This model can also be used to generate natural language design suggestions (see paper).
20
+ This is a model described in the publication "UIClip: A Data-driven Model for Assessing User Interface Design" presented at UIST 2024 (https://arxiv.org/abs/2404.12500).
21
+
22
+ User interface (UI) design is a difficult yet important task for ensuring the usability, accessibility, and aesthetic qualities of applications. In our paper, we develop a machine-learned model, UIClip, for assessing the design quality and visual relevance of a UI given its screenshot and natural language description. To train UIClip, we used a combination of automated crawling, synthetic augmentation, and human ratings to construct a large-scale dataset of UIs, collated by description and ranked by design quality. Through training on the dataset, UIClip implicitly learns properties of good and bad designs by i) assigning a numerical score that represents a UI design's relevance and quality and ii) providing design suggestions. In an evaluation that compared the outputs of UIClip and other baselines to UIs rated by 12 human designers, we found that UIClip achieved the highest agreement with ground-truth rankings. Finally, we present three example applications that demonstrate how UIClip can facilitate downstream applications that rely on instantaneous assessment of UI design quality: i) UI code generation, ii) UI design tips generation, and iii) quality-aware UI example search.
23
+
24
+
25
+ - **Developed by:** BigLab
26
+ - **Model type:** CLIP-style Multi-modal Dual-encoder Transformer
27
+ - **Language(s) (NLP):** English
28
+ - **License:** MIT
29
+
30
+ ### Example Code
31
+ ```python
32
+ import torch
33
+ from transformers import CLIPProcessor, CLIPModel
34
+
35
+ IMG_SIZE = 224
36
+ DEVICE = "cpu" # can also be "cuda" or "mps"
37
+ LOGIT_SCALE = 100 # based on OpenAI's CLIP example code
38
+ NORMALIZE_SCORING = True
39
+
40
+ model_path="uiclip_jitteredwebsites-2-224-paraphrased_webpairs_humanpairs" # can also be regular or web pairs variants
41
+ processor_path="openai/clip-vit-base-patch32"
42
+
43
+ model = CLIPModel.from_pretrained(model_path)
44
+ model = model.eval()
45
+ model = model.to(DEVICE)
46
+
47
+ processor = CLIPProcessor.from_pretrained(processor_path)
48
+
49
+ def compute_quality_scores(input_list):
50
+ # input_list is a list of types where the first element is a description and the second is a PIL image
51
+ description_list = ["ui screenshot. well-designed. " + input_item[0] for input_item in input_list]
52
+ img_list = [input_item[1] for input_item in input_list]
53
+ text_embeddings_tensor = compute_description_embeddings(description_list) # B x H
54
+ img_embeddings_tensor = compute_image_embeddings(img_list) # B x H
55
+
56
+ # normalize tensors
57
+ text_embeddings_tensor /= text_embeddings_tensor.norm(dim=-1, keepdim=True)
58
+ img_embeddings_tensor /= img_embeddings_tensor.norm(dim=-1, keepdim=True)
59
+
60
+ if NORMALIZE_SCORING:
61
+ text_embeddings_tensor_poor = compute_description_embeddings([d.replace("well-designed. ", "poor design. ") for d in description_list]) # B x H
62
+ text_embeddings_tensor_poor /= text_embeddings_tensor_poor.norm(dim=-1, keepdim=True)
63
+ text_embeddings_tensor_all = torch.stack((text_embeddings_tensor, text_embeddings_tensor_poor), dim=1) # B x 2 x H
64
+ else:
65
+ text_embeddings_tensor_all = text_embeddings_tensor.unsqueeze(1)
66
+
67
+ img_embeddings_tensor = img_embeddings_tensor.unsqueeze(1) # B x 1 x H
68
+
69
+ scores = (LOGIT_SCALE * img_embeddings_tensor @ text_embeddings_tensor_all.permute(0, 2, 1)).squeeze(1)
70
+
71
+ if NORMALIZE_SCORING:
72
+ scores = scores.softmax(dim=-1)
73
+
74
+ return scores[:, 0]
75
+
76
+ def compute_description_embeddings(descriptions):
77
+ inputs = processor(text=descriptions, return_tensors="pt", padding=True)
78
+ inputs['input_ids'] = inputs['input_ids'].to(DEVICE)
79
+ inputs['attention_mask'] = inputs['attention_mask'].to(DEVICE)
80
+ text_embedding = model.get_text_features(**inputs)
81
+ return text_embedding
82
+
83
+ def compute_image_embeddings(image_list):
84
+ windowed_batch = [slide_window_over_image(img, IMG_SIZE) for img in image_list]
85
+ inds = []
86
+ for imgi in range(len(windowed_batch)):
87
+ inds.append([imgi for _ in windowed_batch[imgi]])
88
+
89
+ processed_batch = [item for sublist in windowed_batch for item in sublist]
90
+ inputs = processor(images=processed_batch, return_tensors="pt")
91
+ # run all sub windows of all images in batch through the model
92
+ inputs['pixel_values'] = inputs['pixel_values'].to(DEVICE)
93
+ with torch.no_grad():
94
+ image_features = model.get_image_features(**inputs)
95
+
96
+ # output contains all subwindows, need to mask for each image
97
+ processed_batch_inds = torch.tensor([item for sublist in inds for item in sublist]).long().to(image_features.device)
98
+ embed_list = []
99
+ for i in range(len(image_list)):
100
+ mask = processed_batch_inds == i
101
+ embed_list.append(image_features[mask].mean(dim=0))
102
+ image_embedding = torch.stack(embed_list, dim=0)
103
+ return image_embedding
104
+
105
+ def preresize_image(image, image_size):
106
+ aspect_ratio = image.width / image.height
107
+ if aspect_ratio > 1:
108
+ image = image.resize((int(aspect_ratio * image_size), image_size))
109
+ else:
110
+ image = image.resize((image_size, int(image_size / aspect_ratio)))
111
+ return image
112
+
113
+ def slide_window_over_image(input_image, img_size):
114
+ input_image = preresize_image(input_image, img_size)
115
+ width, height = input_image.size
116
+ square_size = min(width, height)
117
+ longer_dimension = max(width, height)
118
+ num_steps = (longer_dimension + square_size - 1) // square_size
119
+
120
+ if num_steps > 1:
121
+ step_size = (longer_dimension - square_size) // (num_steps - 1)
122
+ else:
123
+ step_size = square_size
124
+
125
+ cropped_images = []
126
+
127
+ for y in range(0, height - square_size + 1, step_size if height > width else square_size):
128
+ for x in range(0, width - square_size + 1, step_size if width > height else square_size):
129
+ left = x
130
+ upper = y
131
+ right = x + square_size
132
+ lower = y + square_size
133
+ cropped_image = input_image.crop((left, upper, right, lower))
134
+ cropped_images.append(cropped_image)
135
+
136
+ return cropped_images
137
+
138
+
139
+ # compute the quality scores for a list of descriptions (strings) and images (PIL images)
140
+ prediction_scores = compute_quality_scores(list(zip(test_descriptions, test_images)))
141
+ ```