File size: 2,220 Bytes
043ecd9 877143a 043ecd9 877143a 043ecd9 877143a 043ecd9 3982c32 043ecd9 877143a 043ecd9 9720470 5b824f1 043ecd9 da2b29d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# sgpt-nli-bloom-1b3
## Usage
For usage instructions, refer to: https://github.com/Muennighoff/sgpt#symmetric-semantic-search
The model was trained with the command
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/nli/training_nli_v2.py --model_name bigscience/bloom-1b3 --freezenonbias --train_batch_size 128 --lr 32e-5 --pooling weightedmean --wandb --wandbwatchlog gradients --gradcache --chunksize 4
```
## Evaluation Results
`{'askubuntu': 57.44, 'cqadupstack': 14.18, 'twitterpara': 73.99, 'scidocs': 74.74, 'avg': 55.087500000000006}`
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4403 with parameters:
```
{'batch_size': 128}
```
The model uses BitFit, weighted-mean pooling & GradCache, for details see: https://arxiv.org/abs/2202.08904
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 440,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.00032
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 441,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
```bibtex
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}
```
|