Text2Text Generation
Transformers
PyTorch
Safetensors
mt5
Eval Results
Inference Endpoints
TimeRobber commited on
Commit
6f9f453
1 Parent(s): 739c994
Files changed (1) hide show
  1. README.md +425 -0
README.md ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - multilingual
5
+ - af
6
+ - am
7
+ - ar
8
+ - az
9
+ - be
10
+ - bg
11
+ - bn
12
+ - ca
13
+ - ceb
14
+ - co
15
+ - cs
16
+ - cy
17
+ - da
18
+ - de
19
+ - el
20
+ - en
21
+ - eo
22
+ - es
23
+ - et
24
+ - eu
25
+ - fa
26
+ - fi
27
+ - fil
28
+ - fr
29
+ - fy
30
+ - ga
31
+ - gd
32
+ - gl
33
+ - gu
34
+ - ha
35
+ - haw
36
+ - hi
37
+ - hmn
38
+ - ht
39
+ - hu
40
+ - hy
41
+ - ig
42
+ - is
43
+ - it
44
+ - iw
45
+ - ja
46
+ - jv
47
+ - ka
48
+ - kk
49
+ - km
50
+ - kn
51
+ - ko
52
+ - ku
53
+ - ky
54
+ - la
55
+ - lb
56
+ - lo
57
+ - lt
58
+ - lv
59
+ - mg
60
+ - mi
61
+ - mk
62
+ - ml
63
+ - mn
64
+ - mr
65
+ - ms
66
+ - mt
67
+ - my
68
+ - ne
69
+ - nl
70
+ - no
71
+ - ny
72
+ - pa
73
+ - pl
74
+ - ps
75
+ - pt
76
+ - ro
77
+ - ru
78
+ - sd
79
+ - si
80
+ - sk
81
+ - sl
82
+ - sm
83
+ - sn
84
+ - so
85
+ - sq
86
+ - sr
87
+ - st
88
+ - su
89
+ - sv
90
+ - sw
91
+ - ta
92
+ - te
93
+ - tg
94
+ - th
95
+ - tr
96
+ - uk
97
+ - und
98
+ - ur
99
+ - uz
100
+ - vi
101
+ - xh
102
+ - yi
103
+ - yo
104
+ - zh
105
+ - zu
106
+ datasets:
107
+ - mc4
108
+ - bigscience/xP3
109
+ ---
110
+
111
+ Multilingual Text-to-Text Transfer Transformer Zero (MT0)
112
+ Version 1. / 28 October 2022
113
+
114
+ ---
115
+
116
+ # Models
117
+
118
+ mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
119
+
120
+ Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
121
+
122
+ mt5 was then finetuned on:
123
+ - [xP3](https://huggingface.co/bigscience/xP3) to obtain [mt0-small](https://huggingface.co/bigscience/mt0-small)/[mt0-base](https://huggingface.co/bigscience/mt0-base)/[mt0-large](https://huggingface.co/bigscience/mt0-large)/[mt0-xl](https://huggingface.co/bigscience/mt0-xl)/[mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)
124
+ - [P3](https://huggingface.co/bigscience/P3) to obtain [mt0-p3-xxl](https://huggingface.co/bigscience/mt0-p3-xxl)
125
+ - [xP3mt](https://huggingface.co/bigscience/xP3mt) to obtain [mt0-mt-xxl](https://huggingface.co/bigscience/mt5-mt-xxl)
126
+
127
+ ## Model Flavors
128
+
129
+ Multilingual model capable of following user instructions in a variety of languages. Together with our paper [TODO: LINK], we release the following models:
130
+
131
+ ----
132
+ - [mt0-small](https://huggingface.co/bigscience/mt0-small): 300M parameters multitask finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) on [xP3](https://huggingface.co/bigscience/xP3)
133
+ - [mt0-base](https://huggingface.co/bigscience/mt0-base): 580M parameters multitask finetuned version of [mt5-base](https://huggingface.co/google/mt5-base) on [xP3](https://huggingface.co/bigscience/xP3)
134
+ - [mt0-large](https://huggingface.co/bigscience/mt0-large): 1.2B parameters multitask finetuned version of [mt5-large](https://huggingface.co/google/mt5-large) on [xP3](https://huggingface.co/bigscience/xP3)
135
+ - [mt0-xl](https://huggingface.co/bigscience/mt0-xl): 3.7B parameters multitask finetuned version of [mt5-xl](https://huggingface.co/google/mt5-xl) on [xP3](https://huggingface.co/bigscience/xP3)
136
+ - [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/bigscience/xP3)
137
+ ----
138
+ - [mt0-p3-xxl](https://huggingface.co/bigscience/mt0-p3-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [P3](https://huggingface.co/bigscience/P3)
139
+ - [mt0-mt-xxl](https://huggingface.co/bigscience/mt5-mt-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3mt](https://huggingface.co/bigscience/xP3mt)
140
+
141
+ ## Basics
142
+ *This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
143
+ *It is useful for anyone who wants to reference the model.*
144
+
145
+ <details>
146
+ <summary>Click to expand</summary>
147
+
148
+ *All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
149
+
150
+ **Model Type:** Transformer-based Language Model
151
+
152
+ **Checkpoints format:** `transformers`
153
+
154
+ **Version:** 1.0.0
155
+
156
+ **Languages:** Multiple; see [training data](#training-data)
157
+
158
+ **License:** Apache 2.0
159
+
160
+ **Release Date Estimate:** Friday, 28.October.2022
161
+
162
+ **Send Questions to:** [email protected]
163
+
164
+ **Funded by:**
165
+ * The French government.
166
+ * Hugging Face ([website](https://huggingface.co)).
167
+
168
+ </details>
169
+
170
+
171
+ ## Technical Specifications
172
+ *This section includes details about the model objective and architecture, and the compute infrastructure.*
173
+ *It is useful for people interested in model development.*
174
+
175
+ <details>
176
+ <summary>Click to expand</summary>
177
+
178
+ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
179
+
180
+ ### Model Architecture and Objective
181
+
182
+ * Same architecture as [mt5](https://arxiv.org/abs/2010.11934)
183
+
184
+ * Encoder-decoder architecture
185
+
186
+ **Objective Function:** Cross Entropy with mean reduction on target tokens (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
187
+
188
+ ### Compute infrastructure
189
+
190
+ // TODO @adarob: Can you describe where you trained it?
191
+
192
+ #### Hardware
193
+
194
+ // TODO @adarob: Can you describe what was the hardware used?
195
+
196
+ #### Software
197
+
198
+ * T5X([Github link](https://github.com/google-research/t5x), [paper](https://arxiv.org/abs/2203.17189))
199
+
200
+ </details>
201
+
202
+ ---
203
+
204
+ # Training
205
+ *This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
206
+ *It is useful for people who want to learn more about the model inputs and training footprint.*
207
+
208
+ <details>
209
+ <summary>Click to expand</summary>
210
+
211
+ ## Training Data
212
+ *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
213
+
214
+ It was pretrained on mC4 and then finetuned on xP3, P3 or xP3mt.
215
+
216
+ ### Languages
217
+
218
+ // TODO @thomasw21: Copy list from mt5
219
+
220
+ ## Speeds, Sizes, Times
221
+
222
+ // TODO @adarob: Maybe we can push tensorboard on this repo as well
223
+ Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)
224
+
225
+ - Checkpoint size:
226
+
227
+ - Bf16 weights: 51.7GB
228
+
229
+ - Number of epochs: 1
230
+
231
+ // TODO @adarob: Can you share where the server is?
232
+ - Server training location:
233
+
234
+
235
+ ## Environmental Impact
236
+
237
+ // TODO @adarob: Is it possible for you to share some information about the impact of where you trained it?
238
+
239
+ The evaluation supercomputer, [Jean Zay](http://www.idris.fr/eng/jean-zay/), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
240
+
241
+ </details>
242
+
243
+ ---
244
+
245
+ # Uses
246
+
247
+ *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
248
+ *It is useful for anyone considering using the model or who is affected by the model.*
249
+
250
+ <details>
251
+ <summary>Click to expand</summary>
252
+
253
+ ## How to use
254
+
255
+ This model can be easily used and deployed using HuggingFace's ecosystem. This needs `transformers` and `accelerate` installed. The model can be downloaded as follows:
256
+
257
+ ```python
258
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
259
+
260
+ checkpoint = "..." # "checkpoint_1006000" for example
261
+ model_name = "bigscience/mt0-xxl"
262
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name, revision=checkpoint, torch_dtype="auto", device_map="auto")
263
+ tokenizer = AutoTokenizer.from_pretrained(model_name, revision=checkpoint)
264
+
265
+ inputs = tokenizer.encode("Commentaire: C'est la meilleure crêpière que j'ai jamais eu. Je l'adore.\nCe commentaire est-il positif ou négatif?", return_tensors="pt")
266
+ outputs = model.generate(inputs)
267
+ print(tokenizer.decode(outputs[0]))
268
+ ```
269
+
270
+ ## Intended Use
271
+
272
+ This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
273
+
274
+ ### Direct Use
275
+
276
+ - Text generation
277
+
278
+ - Exploring characteristics of language generated by a language model
279
+
280
+ - Examples: Cloze tests, counterfactuals, generations with reframings
281
+
282
+ ### Downstream Use
283
+
284
+ - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
285
+
286
+ </details>
287
+
288
+ ---
289
+
290
+ # Risks and Limitations
291
+ *This section identifies foreseeable harms and misunderstandings.*
292
+
293
+ <details>
294
+ <summary>Click to expand</summary>
295
+
296
+ Model may:
297
+
298
+ - Overrepresent some viewpoints and underrepresent others
299
+
300
+ - Contain stereotypes
301
+
302
+ - Contain [personal information](#personal-data-and-information)
303
+
304
+ - Generate:
305
+
306
+ - Hateful, abusive, or violent language
307
+
308
+ - Discriminatory or prejudicial language
309
+
310
+ - Content that may not be appropriate for all settings, including sexual content
311
+
312
+ - Make errors, including producing incorrect information as if it were factual
313
+
314
+ - Generate irrelevant or repetitive outputs
315
+
316
+ - Induce users into attributing human traits to it, such as sentience or consciousness
317
+
318
+ </details>
319
+
320
+ ---
321
+
322
+ # Evaluation
323
+ *This section describes the evaluation protocols and provides the results.*
324
+
325
+
326
+ <details>
327
+ <summary>Click to expand</summary>
328
+
329
+ ## Metrics
330
+ *This section describes the different ways performance is calculated and why.*
331
+
332
+ # TODO @niklas
333
+
334
+ ## Results
335
+ *Results are based on the [Metrics](#metrics).*
336
+
337
+ **Zero-shot evaluations:**
338
+
339
+ # TODO @niklas
340
+
341
+
342
+ **Train-time Evaluation:**
343
+
344
+ # TODO @adarob: Pending if we can get access to tensorboard
345
+
346
+ </details>
347
+
348
+ ---
349
+
350
+ # Recommendations
351
+
352
+ *This section provides information on warnings and potential mitigations.*
353
+
354
+ <details>
355
+ <summary>Click to expand</summary>
356
+
357
+ - Indirect users should be made aware when the content they're working with is created by the LLM.
358
+
359
+ - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
360
+
361
+ - Models trained or finetuned downstream of MT0 should include an updated Model Card.
362
+
363
+ - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
364
+
365
+ </details>
366
+
367
+ ---
368
+
369
+ # Glossary and Calculations
370
+
371
+ *This section defines common terms and how metrics are calculated.*
372
+ <details>
373
+ <summary>Click to expand</summary>
374
+
375
+ - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
376
+
377
+ - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
378
+
379
+ - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
380
+
381
+ - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
382
+
383
+ - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
384
+
385
+ - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
386
+
387
+ - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
388
+
389
+ - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
390
+
391
+ </details>
392
+
393
+ ---
394
+
395
+ # More Information
396
+ *This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*
397
+
398
+ <details>
399
+ <summary>Click to expand</summary>
400
+
401
+ ## Intermediate checkpoints
402
+
403
+ For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 1000 steps. There are available as branches in this repository. You can use them using `transformers`:
404
+
405
+ ```python
406
+ from transformers import AutoModel
407
+
408
+ checkpoint = "..." # "checkpoint_1006000" for example
409
+ model = AutoModel.from_pretrained("bigscience/mt0-xxl", revision=checkpoint, torch_dtype="auto", device_map="auto")
410
+ ```
411
+
412
+ ## Dataset Creation
413
+
414
+ // TODO @niklas: Point to the arxiv paper
415
+
416
+ ## Original checkpoints
417
+
418
+ The checkpoints in this repo correspond to the HuggingFace Transformers format. We'll provide T5X checkpoints as well.
419
+
420
+ # Citing MT0
421
+
422
+ Please use the following bibtex entry to cite T0:
423
+ ```bibtex
424
+ TODO @niklas
425
+ ```