--- language: - th license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Thai Combined V2 - biodatlab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 th type: mozilla-foundation/common_voice_11_0 config: th split: test args: th metrics: - name: Wer type: wer value: 13.03 --- # Whisper Medium (Thai): Combined V2 This model is a fine-tuned version of [biodatlab/whisper-medium-th-1000iter](https://huggingface.co/biodatlab/whisper-medium-th-1000iter) on the mozilla-foundation/common_voice_11_0 th dataset. It achieves the following results on the evaluation set: - Loss: 0.1475 - WER: 13.03 ## Model description Use the model with huggingface's `transformers` as follows: ```py from transformers import pipeline MODEL_NAME = "biodatlab/whisper-medium-th-combined-v2" # specify the model name lang = "th" # change to Thai langauge device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids( language=lang, task="transcribe" ) text = pipe("audio.mp3")["text"] # give audio mp3 and transcribe text ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0679 | 2.09 | 5000 | 0.1475 | 13.03 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2