File size: 1,841 Bytes
b10da24 639abd7 b10da24 639abd7 b10da24 f122c50 b10da24 f122c50 b10da24 639abd7 b10da24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: ai21labs/Jamba-tiny-dev
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- bitext/Bitext-combined-banking-wealth_management-mortgage_loans
model-index:
- name: BT-Jamba-tiny-dev-customer-support
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BT-Jamba-tiny-dev-customer-support
This model is a fine-tuned version of [ai21labs/Jamba-tiny-dev](https://huggingface.co/ai21labs/Jamba-tiny-dev) on the bitext/Bitext-combined-banking-wealth_management-mortgage_loans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6095 | 1.0 | 150 | 0.6130 |
| 0.5353 | 2.0 | 300 | 0.5674 |
| 0.4782 | 3.0 | 450 | 0.5598 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1
|