Bitext commited on
Commit
40dd104
1 Parent(s): 2986640

Update README.md

Browse files

Updated model card for `Mistral-7B-Customer-Service-v0.2`:

- Added detailed model description and intended use
- Included a usage example with code snippet
- Provided information on model architecture and training data
- Detailed training procedure with hyperparameters and environment setup
- Included training results table
- Provided a comprehensive dataset description with categories, intents, entities, and language generation tags
- Added sections on limitations, biases, and ethical considerations
- Detailed the Apache 2.0 license

Files changed (1) hide show
  1. README.md +147 -70
README.md CHANGED
@@ -3,26 +3,156 @@ license: apache-2.0
3
  inference: false
4
  pipeline_tag: text-generation
5
  tags:
6
- - axolotl
7
- - generated_from_trainer
8
- - text-generation-inference
9
  model-index:
10
- - name: Mistral-7B-instruct-v0.2
11
- results: []
12
  model_type: mistral
13
  widget:
14
- - messages:
15
- - role: user
16
- content: I want to cancel an order
17
  ---
18
 
19
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
- should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
 
23
  <details><summary>See axolotl config</summary>
24
 
25
  axolotl version: `0.4.0`
 
26
  ```yaml
27
  base_model: mistralai/Mistral-7B-Instruct-v0.2
28
  model_type: MistralForCausalLM
@@ -38,12 +168,12 @@ strict: false
38
  datasets:
39
  - path: bitext/Bitext-customer-support-llm-chatbot-training-dataset
40
  type:
41
- system_prompt: "You are an expert in customer support."
42
  field_instruction: instruction
43
  field_output: response
44
- format: "[INST] {instruction} [/INST]"
45
- no_input_format: "[INST] {instruction} [/INST]"
46
-
47
  #datasets:
48
  # - path: json
49
  # type: alpaca_w_system.load_open_orca
@@ -118,62 +248,9 @@ weight_decay: 0.0
118
  fsdp:
119
  fsdp_config:
120
  special_tokens:
121
- bos_token: "<s>"
122
- eos_token: "</s>"
123
- unk_token: "<unk>"
124
  ```
125
 
126
  </details><br>
127
-
128
- # Mistral-7B-instruct-v0.2
129
-
130
- This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
131
- It achieves the following results on the evaluation set:
132
- - Loss: 0.7667
133
-
134
- ## Model description
135
-
136
- More information needed
137
-
138
- ## Intended uses & limitations
139
-
140
- More information needed
141
-
142
- ## Training and evaluation data
143
-
144
- More information needed
145
-
146
- ## Training procedure
147
-
148
- ### Training hyperparameters
149
-
150
- The following hyperparameters were used during training:
151
- - learning_rate: 0.0002
152
- - train_batch_size: 8
153
- - eval_batch_size: 8
154
- - seed: 42
155
- - gradient_accumulation_steps: 4
156
- - total_train_batch_size: 32
157
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
158
- - lr_scheduler_type: cosine
159
- - lr_scheduler_warmup_steps: 10
160
- - num_epochs: 1
161
-
162
- ### Training results
163
-
164
- | Training Loss | Epoch | Step | Validation Loss |
165
- |:-------------:|:-----:|:----:|:---------------:|
166
- | 1.6865 | 0.01 | 1 | 2.0557 |
167
- | 0.6351 | 0.25 | 32 | 0.8355 |
168
- | 0.5724 | 0.5 | 64 | 0.7859 |
169
- | 0.5249 | 0.75 | 96 | 0.7711 |
170
- | 0.516 | 1.0 | 128 | 0.7667 |
171
-
172
-
173
- ### Framework versions
174
-
175
- - PEFT 0.10.1.dev0
176
- - Transformers 4.40.0.dev0
177
- - Pytorch 2.2.1+cu121
178
- - Datasets 2.18.0
179
- - Tokenizers 0.15.0
 
3
  inference: false
4
  pipeline_tag: text-generation
5
  tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ - text-generation-inference
9
  model-index:
10
+ - name: Mistral-7B-instruct-v0.2
11
+ results: []
12
  model_type: mistral
13
  widget:
14
+ - messages:
15
+ - role: user
16
+ content: I want to cancel an order
17
  ---
18
 
19
+ # Mistral-7B-Customer-Service-v0.2
20
+
21
+ ## Model Description
22
+
23
+ This model is a fine-tuned version of the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), specifically tailored for customer service. It is designed to handle question answering tasks, providing responses based on a specialized customer support dataset.
24
+
25
+ ## Intended Use
26
+
27
+ - **Recommended applications**: This model is intended for automated customer service. You can use it in chatbots, virtual assistants and copilots to answer user questions.
28
+ - **Out-of-scope**: The model is not intended for general conversational purposes and should not be used for medical, legal, or safety-critical advice.
29
+
30
+ ## Usage Example
31
+
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model = AutoModelForCausalLM.from_pretrained("bitext-llm/Mistral-7B-Customer-Service-v0.2")
36
+ tokenizer = AutoTokenizer.from_pretrained("bitext-llm/Mistral-7B-Customer-Service-v0.2")
37
+
38
+ inputs = tokenizer("<s>[INST] I want to change to the standard account [/INST] ", return_tensors="pt")
39
+ outputs = model.generate(inputs['input_ids'], max_length=50)
40
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
41
+ ```
42
+
43
+ ## Model Architecture
44
+
45
+ The model employs the `MistralForCausalLM` architecture with a `LlamaTokenizer`. It maintains the configuration of the base Mistral model but has been fine-tuned to better understand and generate responses related to customer service.
46
+
47
+ ## Training Data
48
+
49
+ The model was fine-tuned using the [bitext/Bitext-customer-support-llm-chatbot-training-dataset](https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset), which is designed for question and answer interactions in the customer service sector. This dataset includes instructions and responses across a variety of customer service topics, ensuring that the model can handle a wide range of inquiries related to this field. The dataset covers 27 intents assigned to 10 categories such as `cancel_order`, `place_order`, `change_order`, and `check_invoice`. Each intent has around 1000 examples, illustrating a training process aimed at understanding and generating accurate responses for customer service interactions.
50
+
51
+ ## Training Procedure
52
+
53
+ ### Hyperparameters
54
+
55
+ - **Optimizer**: AdamW with betas=(0.9, 0.999) and epsilon=1e-08
56
+ - **Learning Rate**: 0.0002 with a cosine learning rate scheduler
57
+ - **Epochs**: 1
58
+ - **Batch Size**: 8
59
+ - **Gradient Accumulation Steps**: 4
60
+ - **Maximum Sequence Length**: 1024 tokens
61
+
62
+ ### Environment
63
+
64
+ - **Transformers Version**: 4.40.0.dev0
65
+ - **Framework**: PyTorch 2.2.1+cu121
66
+ - **Tokenizers**: Tokenizers 0.15.0
67
+
68
+ ## Training Results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss |
71
+ | :-----------: | :---: | :--: | :-------------: |
72
+ | 1.6865 | 0.01 | 1 | 2.0557 |
73
+ | 0.6351 | 0.25 | 32 | 0.8355 |
74
+ | 0.5724 | 0.5 | 64 | 0.7859 |
75
+ | 0.5249 | 0.75 | 96 | 0.7711 |
76
+ | 0.516 | 1.0 | 128 | 0.7667 |
77
+
78
+ ## Dataset Description
79
+
80
+ ### Overview
81
+
82
+ The dataset used for fine-tuning can train Large Language Models for both Fine Tuning and Domain Adaptation. It includes:
83
+
84
+ - **Use Case**: Intent Detection
85
+ - **Vertical**: Customer Service
86
+ - **27 intents** assigned to 10 categories
87
+ - **26,872 question/answer pairs**, around 1000 per intent
88
+ - **30 entity/slot types**
89
+ - **12 different types of language generation tags**
90
+
91
+ ### Categories and Intents
92
+
93
+ The dataset covers the following categories and intents:
94
+
95
+ - **ACCOUNT**: create_account, delete_account, edit_account, switch_account
96
+ - **CANCELLATION_FEE**: check_cancellation_fee
97
+ - **DELIVERY**: delivery_options
98
+ - **FEEDBACK**: complaint, review
99
+ - **INVOICE**: check_invoice, get_invoice
100
+ - **NEWSLETTER**: newsletter_subscription
101
+ - **ORDER**: cancel_order, change_order, place_order
102
+ - **PAYMENT**: check_payment_methods, payment_issue
103
+ - **REFUND**: check_refund_policy, track_refund
104
+ - **SHIPPING_ADDRESS**: change_shipping_address, set_up_shipping_address
105
+
106
+ ### Entities
107
+
108
+ The dataset includes various entities such as:
109
+
110
+ - {{Order Number}}, {{Invoice Number}}, {{Online Order Interaction}}, {{Online Payment Interaction}}, {{Online Navigation Step}}, {{Online Customer Support Channel}}, {{Profile}}, {{Profile Type}}, {{Settings}}, {{Online Company Portal Info}}, {{Date}}, {{Date Range}}, {{Shipping Cut-off Time}}, {{Delivery City}}, {{Delivery Country}}, {{Salutation}}, {{Client First Name}}, {{Client Last Name}}, {{Customer Support Phone Number}}, {{Customer Support Email}}, {{Live Chat Support}}, {{Website URL}}, {{Upgrade Account}}, {{Account Type}}, {{Account Category}}, {{Account Change}}, {{Program}}, {{Refund Amount}}, {{Money Amount}}, {{Store Location}}
111
+
112
+ ### Language Generation Tags
113
+
114
+ The dataset contains tags for various linguistic phenomena:
115
+
116
+ - **Lexical Variation**: Morphological (M), Semantic (L)
117
+ - **Syntactic Structure Variation**: Basic (B), Interrogative (I), Coordinated (C), Negation (N)
118
+ - **Language Register Variations**: Politeness (P), Colloquial (Q), Offensive (W)
119
+ - **Stylistic Variations**: Keyword (K), Abbreviations (E), Errors and Typos (Z)
120
+ - **Other Tags**: Indirect Speech (D), Regional Variations (G), Respect Structures (R), Code Switching (Y)
121
+
122
+ ## Limitations and Bias
123
+
124
+ - The model is fine-tuned on a domain-specific dataset and may not perform well outside the scope of customer service.
125
+ - Users should be aware of potential biases in the training data, as the model's responses may inadvertently reflect these biases. The dataset aims to cover general customer service inquiries, but biases may exist for specific use cases.
126
+
127
+ ## Ethical Considerations
128
+
129
+ This model should be used responsibly, considering ethical implications of automated customer service. It is important to ensure that the model's advice complements human expertise and adheres to relevant customer service guidelines.
130
+
131
+ ## Acknowledgments
132
+
133
+ This model was developed by Bitext and trained on infrastructure provided by Bitext.
134
+
135
+ ## License
136
+
137
+ This model, "Mistral-7B-Customer-Service-v0.2," is licensed under the Apache License 2.0 by Bitext Innovations International, Inc. This open-source license allows for free use, modification, and distribution of the model but requires that proper credit be given to Bitext.
138
+
139
+ ### Key Points of the Apache 2.0 License
140
+
141
+ - **Permissibility**: Users are allowed to use, modify, and distribute this software freely.
142
+ - **Attribution**: You must provide proper credit to Bitext Innovations International, Inc. when using this model, in accordance with the original copyright notices and the license.
143
+ - **Patent Grant**: The license includes a grant of patent rights from the contributors of the model.
144
+ - **No Warranty**: The model is provided "as is" without warranties of any kind.
145
+
146
+ You may view the full license text at [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0).
147
+
148
+ This licensing ensures the model can be used widely and freely while respecting the intellectual contributions of Bitext. For more detailed information or specific legal questions about using this license, please refer to the official license documentation linked above.
149
 
150
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
151
+
152
  <details><summary>See axolotl config</summary>
153
 
154
  axolotl version: `0.4.0`
155
+
156
  ```yaml
157
  base_model: mistralai/Mistral-7B-Instruct-v0.2
158
  model_type: MistralForCausalLM
 
168
  datasets:
169
  - path: bitext/Bitext-customer-support-llm-chatbot-training-dataset
170
  type:
171
+ system_prompt: 'You are an expert in customer support.'
172
  field_instruction: instruction
173
  field_output: response
174
+ format: '[INST] {instruction} [/INST]'
175
+ no_input_format: '[INST] {instruction} [/INST]'
176
+
177
  #datasets:
178
  # - path: json
179
  # type: alpaca_w_system.load_open_orca
 
248
  fsdp:
249
  fsdp_config:
250
  special_tokens:
251
+ bos_token: '<s>'
252
+ eos_token: '</s>'
253
+ unk_token: '<unk>'
254
  ```
255
 
256
  </details><br>