malmarjeh commited on
Commit
e1779f9
1 Parent(s): f891594

End of training

Browse files
Files changed (2) hide show
  1. README.md +173 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
8
+ model-index:
9
+ - name: Mistral-7B-instruct-v0.2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_mistral_derived_model: true
25
+
26
+ hub_model_id: malmarjeh/Mistral-7B-instruct-v0.2
27
+
28
+ load_in_8bit: false
29
+ load_in_4bit: true
30
+ strict: false
31
+
32
+ datasets:
33
+ - path: bitext/Bitext-customer-support-llm-chatbot-training-dataset
34
+ type:
35
+ system_prompt: "You are an expert in customer support."
36
+ field_instruction: instruction
37
+ field_output: response
38
+ format: "[INST] {instruction} [/INST]"
39
+ no_input_format: "[INST] {instruction} [/INST]"
40
+
41
+ #datasets:
42
+ # - path: json
43
+ # type: alpaca_w_system.load_open_orca
44
+ #data_files: file.zip
45
+
46
+ dataset_prepared_path:
47
+
48
+ val_set_size: 0.05
49
+ output_dir: ./qlora-out
50
+
51
+ adapter: qlora
52
+ lora_model_dir:
53
+
54
+ sequence_len: 1024
55
+ sample_packing: true
56
+ pad_to_sequence_len: true
57
+
58
+ eval_sample_packing: False
59
+
60
+ lora_r: 32
61
+ lora_alpha: 16
62
+ lora_dropout: 0.05
63
+ lora_target_linear: true
64
+ lora_fan_in_fan_out:
65
+ lora_target_modules:
66
+ - gate_proj
67
+ - down_proj
68
+ - up_proj
69
+ - q_proj
70
+ - v_proj
71
+ - k_proj
72
+ - o_proj
73
+
74
+ wandb_project: axolotl
75
+ wandb_entity:
76
+ wandb_watch:
77
+ wandb_name:
78
+ wandb_log_model:
79
+
80
+ gradient_accumulation_steps: 4
81
+ micro_batch_size: 8
82
+ num_epochs: 1
83
+ optimizer: adamw_bnb_8bit
84
+ lr_scheduler: cosine
85
+ learning_rate: 0.0002
86
+
87
+ train_on_inputs: false
88
+ group_by_length: false
89
+ bf16: auto
90
+ fp16:
91
+ tf32: false
92
+
93
+ gradient_checkpointing: true
94
+ early_stopping_patience:
95
+ resume_from_checkpoint:
96
+ local_rank:
97
+ logging_steps: 1
98
+ xformers_attention:
99
+ flash_attention: true
100
+
101
+ loss_watchdog_threshold: 5.0
102
+ loss_watchdog_patience: 3
103
+
104
+ warmup_steps: 10
105
+ evals_per_epoch: 4
106
+ eval_table_size:
107
+ eval_max_new_tokens: 128
108
+ saves_per_epoch: 1
109
+ debug:
110
+ deepspeed:
111
+ weight_decay: 0.0
112
+ fsdp:
113
+ fsdp_config:
114
+ special_tokens:
115
+ bos_token: "<s>"
116
+ eos_token: "</s>"
117
+ unk_token: "<unk>"
118
+ ```
119
+
120
+ </details><br>
121
+
122
+ # Mistral-7B-instruct-v0.2
123
+
124
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset.
125
+ It achieves the following results on the evaluation set:
126
+ - Loss: 0.7667
127
+
128
+ ## Model description
129
+
130
+ More information needed
131
+
132
+ ## Intended uses & limitations
133
+
134
+ More information needed
135
+
136
+ ## Training and evaluation data
137
+
138
+ More information needed
139
+
140
+ ## Training procedure
141
+
142
+ ### Training hyperparameters
143
+
144
+ The following hyperparameters were used during training:
145
+ - learning_rate: 0.0002
146
+ - train_batch_size: 8
147
+ - eval_batch_size: 8
148
+ - seed: 42
149
+ - gradient_accumulation_steps: 4
150
+ - total_train_batch_size: 32
151
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
152
+ - lr_scheduler_type: cosine
153
+ - lr_scheduler_warmup_steps: 10
154
+ - num_epochs: 1
155
+
156
+ ### Training results
157
+
158
+ | Training Loss | Epoch | Step | Validation Loss |
159
+ |:-------------:|:-----:|:----:|:---------------:|
160
+ | 1.6865 | 0.01 | 1 | 2.0557 |
161
+ | 0.6351 | 0.25 | 32 | 0.8355 |
162
+ | 0.5724 | 0.5 | 64 | 0.7859 |
163
+ | 0.5249 | 0.75 | 96 | 0.7711 |
164
+ | 0.516 | 1.0 | 128 | 0.7667 |
165
+
166
+
167
+ ### Framework versions
168
+
169
+ - PEFT 0.10.1.dev0
170
+ - Transformers 4.40.0.dev0
171
+ - Pytorch 2.2.1+cu121
172
+ - Datasets 2.18.0
173
+ - Tokenizers 0.15.0
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66148ab3f17b4c38acff85de9031b10ba96b94d962dca63eae6d46d52f6575f
3
+ size 335706186