bjoernp commited on
Commit
ac16bb7
1 Parent(s): 2e81592

Update configuration_bitllama.py

Browse files
Files changed (1) hide show
  1. configuration_bitllama.py +151 -1289
configuration_bitllama.py CHANGED
@@ -17,1313 +17,175 @@
17
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
  # See the License for the specific language governing permissions and
19
  # limitations under the License.
20
- """ PyTorch LLaMA model."""
21
- import math
22
- import warnings
23
- from typing import List, Optional, Tuple, Union
24
 
25
- import torch
26
- import torch.nn.functional as F
27
- import torch.utils.checkpoint
28
- from torch import nn
29
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
-
31
- from transformers.activations import ACT2FN
32
- from transformers.cache_utils import Cache, DynamicCache
33
- from transformers.modeling_attn_mask_utils import (
34
- AttentionMaskConverter,
35
- _prepare_4d_attention_mask,
36
- _prepare_4d_causal_attention_mask,
37
- )
38
- from transformers.modeling_outputs import (
39
- BaseModelOutputWithPast,
40
- CausalLMOutputWithPast,
41
- SequenceClassifierOutputWithPast,
42
- )
43
- from transformers.modeling_utils import PreTrainedModel
44
- from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
45
- from transformers.utils import (
46
- add_start_docstrings,
47
- add_start_docstrings_to_model_forward,
48
- is_flash_attn_2_available,
49
- is_flash_attn_greater_or_equal_2_10,
50
- logging,
51
- replace_return_docstrings,
52
- )
53
- from transformers.utils.import_utils import is_torch_fx_available
54
-
55
- from .configuration_bitllama import LlamaConfig
56
-
57
-
58
- if is_flash_attn_2_available():
59
- from flash_attn import flash_attn_func, flash_attn_varlen_func
60
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
61
-
62
-
63
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
64
- # It means that the function will not be traced through and simply appear as a node in the graph.
65
- if is_torch_fx_available():
66
- if not is_torch_greater_or_equal_than_1_13:
67
- import torch.fx
68
-
69
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
70
 
71
 
72
  logger = logging.get_logger(__name__)
73
 
74
- _CONFIG_FOR_DOC = "LlamaConfig"
75
-
76
-
77
- def _get_unpad_data(attention_mask):
78
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
79
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
80
- max_seqlen_in_batch = seqlens_in_batch.max().item()
81
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
82
- return (
83
- indices,
84
- cu_seqlens,
85
- max_seqlen_in_batch,
86
- )
87
-
88
-
89
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
90
- warnings.warn(
91
- "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
92
- )
93
- return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
94
-
95
-
96
- def _make_causal_mask(
97
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
- ):
99
- warnings.warn(
100
- "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
101
- )
102
- return AttentionMaskConverter._make_causal_mask(
103
- input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
104
- )
105
-
106
-
107
- class LlamaRMSNorm(nn.Module):
108
- def __init__(self, hidden_size, eps=1e-6):
109
- """
110
- LlamaRMSNorm is equivalent to T5LayerNorm
111
- """
112
- super().__init__()
113
- self.weight = nn.Parameter(torch.ones(hidden_size))
114
- self.variance_epsilon = eps
115
-
116
- def forward(self, hidden_states):
117
- input_dtype = hidden_states.dtype
118
- hidden_states = hidden_states.to(torch.float32)
119
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
120
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
121
- return self.weight * hidden_states.to(input_dtype)
122
-
123
-
124
- ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
125
-
126
-
127
- class LlamaRotaryEmbedding(nn.Module):
128
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
129
- super().__init__()
130
-
131
- self.dim = dim
132
- self.max_position_embeddings = max_position_embeddings
133
- self.base = base
134
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
135
- self.register_buffer("inv_freq", inv_freq, persistent=False)
136
-
137
- # Build here to make `torch.jit.trace` work.
138
- self._set_cos_sin_cache(
139
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
140
- )
141
-
142
- def _set_cos_sin_cache(self, seq_len, device, dtype):
143
- self.max_seq_len_cached = seq_len
144
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
145
-
146
- freqs = torch.outer(t, self.inv_freq)
147
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
148
- emb = torch.cat((freqs, freqs), dim=-1)
149
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
150
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
151
-
152
- def forward(self, x, seq_len=None):
153
- # x: [bs, num_attention_heads, seq_len, head_size]
154
- if seq_len > self.max_seq_len_cached:
155
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
156
-
157
- return (
158
- self.cos_cached[:seq_len].to(dtype=x.dtype),
159
- self.sin_cached[:seq_len].to(dtype=x.dtype),
160
- )
161
-
162
-
163
- class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
164
- """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
165
-
166
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
167
- self.scaling_factor = scaling_factor
168
- super().__init__(dim, max_position_embeddings, base, device)
169
 
170
- def _set_cos_sin_cache(self, seq_len, device, dtype):
171
- self.max_seq_len_cached = seq_len
172
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
173
- t = t / self.scaling_factor
174
 
175
- freqs = torch.outer(t, self.inv_freq)
176
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
177
- emb = torch.cat((freqs, freqs), dim=-1)
178
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
179
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
180
 
 
 
181
 
182
- class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
183
- """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
184
-
185
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
186
- self.scaling_factor = scaling_factor
187
- super().__init__(dim, max_position_embeddings, base, device)
188
-
189
- def _set_cos_sin_cache(self, seq_len, device, dtype):
190
- self.max_seq_len_cached = seq_len
191
-
192
- if seq_len > self.max_position_embeddings:
193
- base = self.base * (
194
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
195
- ) ** (self.dim / (self.dim - 2))
196
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
197
- self.register_buffer("inv_freq", inv_freq, persistent=False)
198
-
199
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
200
-
201
- freqs = torch.outer(t, self.inv_freq)
202
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
203
- emb = torch.cat((freqs, freqs), dim=-1)
204
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
205
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
206
-
207
-
208
- def rotate_half(x):
209
- """Rotates half the hidden dims of the input."""
210
- x1 = x[..., : x.shape[-1] // 2]
211
- x2 = x[..., x.shape[-1] // 2 :]
212
- return torch.cat((-x2, x1), dim=-1)
213
-
214
-
215
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
216
- """Applies Rotary Position Embedding to the query and key tensors.
217
 
218
  Args:
219
- q (`torch.Tensor`): The query tensor.
220
- k (`torch.Tensor`): The key tensor.
221
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
222
- sin (`torch.Tensor`): The sine part of the rotary embedding.
223
- position_ids (`torch.Tensor`):
224
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
225
- used to pass offsetted position ids when working with a KV-cache.
226
- unsqueeze_dim (`int`, *optional*, defaults to 1):
227
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
228
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
229
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
230
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
231
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
232
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
233
- Returns:
234
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
235
- """
236
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
237
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
238
- q_embed = (q * cos) + (rotate_half(q) * sin)
239
- k_embed = (k * cos) + (rotate_half(k) * sin)
240
- return q_embed, k_embed
241
-
242
-
243
- def activation_quant(x):
244
- scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
245
- y = (x * scale).round().clamp_(-128, 127) / scale
246
- return y
247
-
248
-
249
- def weight_quant(w):
250
- scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
251
- u = (w * scale).round().clamp_(-1, 1) / scale
252
- return u
253
-
254
-
255
- class BitLinear(nn.Linear):
256
- def forward(self, x):
257
- w = self.weight
258
- x_norm = LlamaRMSNorm(x)
259
- x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
260
- w_quant = w + (weight_quant(w) - w).detach()
261
- return F.linear(x_quant, w_quant)
262
-
263
-
264
- class LlamaMLP(nn.Module):
265
- def __init__(self, config):
266
- super().__init__()
267
- self.config = config
268
- self.hidden_size = config.hidden_size
269
- self.intermediate_size = config.intermediate_size
270
- self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False)
271
- self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False)
272
- self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False)
273
- self.act_fn = ACT2FN[config.hidden_act]
274
-
275
- def forward(self, x):
276
- if self.config.pretraining_tp > 1:
277
- slice = self.intermediate_size // self.config.pretraining_tp
278
- gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
279
- up_proj_slices = self.up_proj.weight.split(slice, dim=0)
280
- down_proj_slices = self.down_proj.weight.split(slice, dim=1)
281
-
282
- gate_proj = torch.cat(
283
- [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
284
- )
285
- up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
286
-
287
- intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
288
- down_proj = [
289
- F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
290
- ]
291
- down_proj = sum(down_proj)
292
- else:
293
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
294
-
295
- return down_proj
296
-
297
-
298
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
299
- """
300
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
301
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
302
- """
303
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
304
- if n_rep == 1:
305
- return hidden_states
306
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
307
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
308
-
309
-
310
- class LlamaAttention(nn.Module):
311
- """Multi-headed attention from 'Attention Is All You Need' paper"""
312
-
313
- def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
314
- super().__init__()
315
- self.config = config
316
- self.layer_idx = layer_idx
317
- if layer_idx is None:
318
- logger.warning_once(
319
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
320
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
321
- "when creating this class."
322
- )
323
-
324
- self.attention_dropout = config.attention_dropout
325
- self.hidden_size = config.hidden_size
326
- self.num_heads = config.num_attention_heads
327
- self.head_dim = self.hidden_size // self.num_heads
328
- self.num_key_value_heads = config.num_key_value_heads
329
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
330
- self.max_position_embeddings = config.max_position_embeddings
331
- self.rope_theta = config.rope_theta
332
- self.is_causal = True
333
-
334
- if (self.head_dim * self.num_heads) != self.hidden_size:
335
- raise ValueError(
336
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
337
- f" and `num_heads`: {self.num_heads})."
338
- )
339
-
340
- self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
341
- self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
342
- self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
343
- self.o_proj = BitLinear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
344
- self._init_rope()
345
-
346
- def _init_rope(self):
347
- if self.config.rope_scaling is None:
348
- self.rotary_emb = LlamaRotaryEmbedding(
349
- self.head_dim,
350
- max_position_embeddings=self.max_position_embeddings,
351
- base=self.rope_theta,
352
- )
353
- else:
354
- scaling_type = self.config.rope_scaling["type"]
355
- scaling_factor = self.config.rope_scaling["factor"]
356
- if scaling_type == "linear":
357
- self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
358
- self.head_dim,
359
- max_position_embeddings=self.max_position_embeddings,
360
- scaling_factor=scaling_factor,
361
- base=self.rope_theta,
362
- )
363
- elif scaling_type == "dynamic":
364
- self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
365
- self.head_dim,
366
- max_position_embeddings=self.max_position_embeddings,
367
- scaling_factor=scaling_factor,
368
- base=self.rope_theta,
369
- )
370
- else:
371
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
372
-
373
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
374
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
375
-
376
- def forward(
377
  self,
378
- hidden_states: torch.Tensor,
379
- attention_mask: Optional[torch.Tensor] = None,
380
- position_ids: Optional[torch.LongTensor] = None,
381
- past_key_value: Optional[Cache] = None,
382
- output_attentions: bool = False,
383
- use_cache: bool = False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
  **kwargs,
385
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
386
- if "padding_mask" in kwargs:
387
- warnings.warn(
388
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
389
- )
390
-
391
- bsz, q_len, _ = hidden_states.size()
392
-
393
- if self.config.pretraining_tp > 1:
394
- key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
395
- query_slices = self.q_proj.weight.split(
396
- (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
397
- )
398
- key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
399
- value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
400
-
401
- query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
402
- query_states = torch.cat(query_states, dim=-1)
403
-
404
- key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
405
- key_states = torch.cat(key_states, dim=-1)
406
-
407
- value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
408
- value_states = torch.cat(value_states, dim=-1)
409
-
410
- else:
411
- query_states = self.q_proj(hidden_states)
412
- key_states = self.k_proj(hidden_states)
413
- value_states = self.v_proj(hidden_states)
414
-
415
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
416
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
417
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
418
-
419
- kv_seq_len = key_states.shape[-2]
420
- if past_key_value is not None:
421
- if self.layer_idx is None:
422
- raise ValueError(
423
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
424
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
425
- "with a layer index."
426
- )
427
- kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
428
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
429
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
430
-
431
- if past_key_value is not None:
432
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
433
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
434
-
435
- key_states = repeat_kv(key_states, self.num_key_value_groups)
436
- value_states = repeat_kv(value_states, self.num_key_value_groups)
437
-
438
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
439
-
440
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
441
- raise ValueError(
442
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
443
- f" {attn_weights.size()}"
444
- )
445
-
446
- if attention_mask is not None:
447
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
448
- raise ValueError(
449
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
450
- )
451
- attn_weights = attn_weights + attention_mask
452
-
453
- # upcast attention to fp32
454
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
455
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
456
- attn_output = torch.matmul(attn_weights, value_states)
457
-
458
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
459
- raise ValueError(
460
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
461
- f" {attn_output.size()}"
462
- )
463
-
464
- attn_output = attn_output.transpose(1, 2).contiguous()
465
-
466
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
467
-
468
- if self.config.pretraining_tp > 1:
469
- attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
470
- o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
471
- attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
472
- else:
473
- attn_output = self.o_proj(attn_output)
474
-
475
- if not output_attentions:
476
- attn_weights = None
477
-
478
- return attn_output, attn_weights, past_key_value
479
-
480
-
481
- class LlamaFlashAttention2(LlamaAttention):
482
- """
483
- Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
484
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
485
- flash attention and deal with padding tokens in case the input contains any of them.
486
- """
487
-
488
- def __init__(self, *args, **kwargs):
489
- super().__init__(*args, **kwargs)
490
-
491
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
492
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
493
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
494
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
495
-
496
- def forward(
497
- self,
498
- hidden_states: torch.Tensor,
499
- attention_mask: Optional[torch.LongTensor] = None,
500
- position_ids: Optional[torch.LongTensor] = None,
501
- past_key_value: Optional[Cache] = None,
502
- output_attentions: bool = False,
503
- use_cache: bool = False,
504
- **kwargs,
505
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
506
- # LlamaFlashAttention2 attention does not support output_attentions
507
- if "padding_mask" in kwargs:
508
- warnings.warn(
509
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
510
- )
511
-
512
- # overwrite attention_mask with padding_mask
513
- attention_mask = kwargs.pop("padding_mask")
514
-
515
- output_attentions = False
516
-
517
- bsz, q_len, _ = hidden_states.size()
518
-
519
- query_states = self.q_proj(hidden_states)
520
- key_states = self.k_proj(hidden_states)
521
- value_states = self.v_proj(hidden_states)
522
-
523
- # Flash attention requires the input to have the shape
524
- # batch_size x seq_length x head_dim x hidden_dim
525
- # therefore we just need to keep the original shape
526
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
527
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
528
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
529
-
530
- kv_seq_len = key_states.shape[-2]
531
- if past_key_value is not None:
532
- kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
533
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
534
-
535
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
536
-
537
- if past_key_value is not None:
538
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
539
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
540
-
541
- # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
542
- # to be able to avoid many of these transpose/reshape/view.
543
- query_states = query_states.transpose(1, 2)
544
- key_states = key_states.transpose(1, 2)
545
- value_states = value_states.transpose(1, 2)
546
-
547
- dropout_rate = 0.0 if not self.training else self.attention_dropout
548
-
549
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
550
- # therefore the input hidden states gets silently casted in float32. Hence, we need
551
- # cast them back in the correct dtype just to be sure everything works as expected.
552
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
553
- # in fp32. (LlamaRMSNorm handles it correctly)
554
-
555
- input_dtype = query_states.dtype
556
- if input_dtype == torch.float32:
557
- # Handle the case where the model is quantized
558
- if hasattr(self.config, "_pre_quantization_dtype"):
559
- target_dtype = self.config._pre_quantization_dtype
560
- else:
561
- target_dtype = self.q_proj.weight.dtype
562
-
563
- logger.warning_once(
564
- f"The input hidden states seems to be silently casted in float32, this might be related to"
565
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
566
- f" {target_dtype}."
567
- )
568
-
569
- query_states = query_states.to(target_dtype)
570
- key_states = key_states.to(target_dtype)
571
- value_states = value_states.to(target_dtype)
572
-
573
- attn_output = self._flash_attention_forward(
574
- query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
575
- )
576
-
577
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
578
- attn_output = self.o_proj(attn_output)
579
-
580
- if not output_attentions:
581
- attn_weights = None
582
-
583
- return attn_output, attn_weights, past_key_value
584
-
585
- def _flash_attention_forward(
586
- self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
587
  ):
588
- """
589
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
590
- first unpad the input, then computes the attention scores and pad the final attention scores.
591
-
592
- Args:
593
- query_states (`torch.Tensor`):
594
- Input query states to be passed to Flash Attention API
595
- key_states (`torch.Tensor`):
596
- Input key states to be passed to Flash Attention API
597
- value_states (`torch.Tensor`):
598
- Input value states to be passed to Flash Attention API
599
- attention_mask (`torch.Tensor`):
600
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
601
- position of padding tokens and 1 for the position of non-padding tokens.
602
- dropout (`int`, *optional*):
603
- Attention dropout
604
- softmax_scale (`float`, *optional*):
605
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
606
- """
607
- if not self._flash_attn_uses_top_left_mask:
608
- causal = self.is_causal
609
- else:
610
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
611
- causal = self.is_causal and query_length != 1
612
-
613
- # Contains at least one padding token in the sequence
614
- if attention_mask is not None:
615
- batch_size = query_states.shape[0]
616
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
617
- query_states, key_states, value_states, attention_mask, query_length
618
- )
619
-
620
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
621
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
622
-
623
- attn_output_unpad = flash_attn_varlen_func(
624
- query_states,
625
- key_states,
626
- value_states,
627
- cu_seqlens_q=cu_seqlens_q,
628
- cu_seqlens_k=cu_seqlens_k,
629
- max_seqlen_q=max_seqlen_in_batch_q,
630
- max_seqlen_k=max_seqlen_in_batch_k,
631
- dropout_p=dropout,
632
- softmax_scale=softmax_scale,
633
- causal=causal,
634
- )
635
-
636
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
637
- else:
638
- attn_output = flash_attn_func(
639
- query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
640
- )
641
-
642
- return attn_output
643
-
644
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
645
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
646
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
647
-
648
- key_layer = index_first_axis(
649
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
650
- )
651
- value_layer = index_first_axis(
652
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
653
- )
654
- if query_length == kv_seq_len:
655
- query_layer = index_first_axis(
656
- query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
657
- )
658
- cu_seqlens_q = cu_seqlens_k
659
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
660
- indices_q = indices_k
661
- elif query_length == 1:
662
- max_seqlen_in_batch_q = 1
663
- cu_seqlens_q = torch.arange(
664
- batch_size + 1, dtype=torch.int32, device=query_layer.device
665
- ) # There is a memcpy here, that is very bad.
666
- indices_q = cu_seqlens_q[:-1]
667
- query_layer = query_layer.squeeze(1)
668
- else:
669
- # The -q_len: slice assumes left padding.
670
- attention_mask = attention_mask[:, -query_length:]
671
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
672
-
673
- return (
674
- query_layer,
675
- key_layer,
676
- value_layer,
677
- indices_q,
678
- (cu_seqlens_q, cu_seqlens_k),
679
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
680
- )
681
-
682
-
683
- class LlamaDecoderLayer(nn.Module):
684
- def __init__(self, config: LlamaConfig, layer_idx: int):
685
- super().__init__()
686
- self.hidden_size = config.hidden_size
687
- self.self_attn = (
688
- LlamaAttention(config=config, layer_idx=layer_idx)
689
- if not getattr(config, "_flash_attn_2_enabled", False)
690
- else LlamaFlashAttention2(config=config, layer_idx=layer_idx)
691
  )
692
- self.mlp = LlamaMLP(config)
693
- # self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
694
- self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
695
 
696
- def forward(
697
- self,
698
- hidden_states: torch.Tensor,
699
- attention_mask: Optional[torch.Tensor] = None,
700
- position_ids: Optional[torch.LongTensor] = None,
701
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
702
- output_attentions: Optional[bool] = False,
703
- use_cache: Optional[bool] = False,
704
- **kwargs,
705
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
706
  """
707
- Args:
708
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
709
- attention_mask (`torch.FloatTensor`, *optional*):
710
- attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
711
- query_sequence_length, key_sequence_length)` if default attention is used.
712
- output_attentions (`bool`, *optional*):
713
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
714
- returned tensors for more detail.
715
- use_cache (`bool`, *optional*):
716
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
717
- (see `past_key_values`).
718
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
719
  """
720
- if "padding_mask" in kwargs:
721
- warnings.warn(
722
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
723
- )
724
-
725
- residual = hidden_states
726
-
727
- # hidden_states = self.input_layernorm(hidden_states)
728
-
729
- # Self Attention
730
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
731
- hidden_states=hidden_states,
732
- attention_mask=attention_mask,
733
- position_ids=position_ids,
734
- past_key_value=past_key_value,
735
- output_attentions=output_attentions,
736
- use_cache=use_cache,
737
- **kwargs,
738
- )
739
- hidden_states = residual + hidden_states
740
-
741
- # Fully Connected
742
- residual = hidden_states
743
- hidden_states = self.post_attention_layernorm(hidden_states)
744
- hidden_states = self.mlp(hidden_states)
745
- hidden_states = residual + hidden_states
746
-
747
- outputs = (hidden_states,)
748
-
749
- if output_attentions:
750
- outputs += (self_attn_weights,)
751
-
752
- if use_cache:
753
- outputs += (present_key_value,)
754
-
755
- return outputs
756
-
757
-
758
- LLAMA_START_DOCSTRING = r"""
759
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
760
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
761
- etc.)
762
-
763
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
764
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
765
- and behavior.
766
-
767
- Parameters:
768
- config ([`LlamaConfig`]):
769
- Model configuration class with all the parameters of the model. Initializing with a config file does not
770
- load the weights associated with the model, only the configuration. Check out the
771
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
772
- """
773
-
774
-
775
- @add_start_docstrings(
776
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
777
- LLAMA_START_DOCSTRING,
778
- )
779
- class BitLlamaPreTrainedModel(PreTrainedModel):
780
- config_class = LlamaConfig
781
- base_model_prefix = "model"
782
- supports_gradient_checkpointing = True
783
- _no_split_modules = ["LlamaDecoderLayer"]
784
- _skip_keys_device_placement = "past_key_values"
785
- _supports_flash_attn_2 = True
786
- _supports_cache_class = True
787
-
788
- def _init_weights(self, module):
789
- std = self.config.initializer_range
790
- if isinstance(module, BitLinear):
791
- module.weight.data.normal_(mean=0.0, std=std)
792
- if module.bias is not None:
793
- module.bias.data.zero_()
794
- elif isinstance(module, nn.Embedding):
795
- module.weight.data.normal_(mean=0.0, std=std)
796
- if module.padding_idx is not None:
797
- module.weight.data[module.padding_idx].zero_()
798
-
799
 
800
- LLAMA_INPUTS_DOCSTRING = r"""
801
- Args:
802
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
803
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
804
- it.
805
-
806
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
807
- [`PreTrainedTokenizer.__call__`] for details.
808
-
809
- [What are input IDs?](../glossary#input-ids)
810
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
811
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
812
-
813
- - 1 for tokens that are **not masked**,
814
- - 0 for tokens that are **masked**.
815
-
816
- [What are attention masks?](../glossary#attention-mask)
817
-
818
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
819
- [`PreTrainedTokenizer.__call__`] for details.
820
-
821
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
822
- `past_key_values`).
823
-
824
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
825
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
826
- information on the default strategy.
827
-
828
- - 1 indicates the head is **not masked**,
829
- - 0 indicates the head is **masked**.
830
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
831
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
832
- config.n_positions - 1]`.
833
-
834
- [What are position IDs?](../glossary#position-ids)
835
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
836
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
837
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
838
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
839
-
840
- Two formats are allowed:
841
- - a [`~cache_utils.Cache`] instance;
842
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
843
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
844
- cache format.
845
-
846
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
847
- legacy cache format will be returned.
848
-
849
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
850
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
851
- of shape `(batch_size, sequence_length)`.
852
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
853
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
854
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
855
- model's internal embedding lookup matrix.
856
- use_cache (`bool`, *optional*):
857
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
858
- `past_key_values`).
859
- output_attentions (`bool`, *optional*):
860
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
861
- tensors for more detail.
862
- output_hidden_states (`bool`, *optional*):
863
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
864
- more detail.
865
- return_dict (`bool`, *optional*):
866
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
867
- """
868
-
869
-
870
- @add_start_docstrings(
871
- "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
872
- LLAMA_START_DOCSTRING,
873
- )
874
- class BitLlamaModel(BitLlamaPreTrainedModel):
875
- """
876
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
877
-
878
- Args:
879
- config: LlamaConfig
880
- """
881
-
882
- def __init__(self, config: LlamaConfig):
883
- super().__init__(config)
884
- self.padding_idx = config.pad_token_id
885
- self.vocab_size = config.vocab_size
886
-
887
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
888
- self.layers = nn.ModuleList(
889
- [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
890
- )
891
- self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
892
-
893
- self.gradient_checkpointing = False
894
- # Initialize weights and apply final processing
895
- self.post_init()
896
-
897
- def get_input_embeddings(self):
898
- return self.embed_tokens
899
-
900
- def set_input_embeddings(self, value):
901
- self.embed_tokens = value
902
-
903
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
904
- def forward(
905
- self,
906
- input_ids: torch.LongTensor = None,
907
- attention_mask: Optional[torch.Tensor] = None,
908
- position_ids: Optional[torch.LongTensor] = None,
909
- past_key_values: Optional[List[torch.FloatTensor]] = None,
910
- inputs_embeds: Optional[torch.FloatTensor] = None,
911
- use_cache: Optional[bool] = None,
912
- output_attentions: Optional[bool] = None,
913
- output_hidden_states: Optional[bool] = None,
914
- return_dict: Optional[bool] = None,
915
- ) -> Union[Tuple, BaseModelOutputWithPast]:
916
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
917
- output_hidden_states = (
918
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
919
- )
920
- use_cache = use_cache if use_cache is not None else self.config.use_cache
921
-
922
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
923
-
924
- # retrieve input_ids and inputs_embeds
925
- if input_ids is not None and inputs_embeds is not None:
926
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
927
- elif input_ids is not None:
928
- batch_size, seq_length = input_ids.shape[:2]
929
- elif inputs_embeds is not None:
930
- batch_size, seq_length = inputs_embeds.shape[:2]
931
- else:
932
- raise ValueError("You have to specify either input_ids or inputs_embeds")
933
-
934
- past_key_values_length = 0
935
- if use_cache:
936
- use_legacy_cache = not isinstance(past_key_values, Cache)
937
- if use_legacy_cache:
938
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
939
- past_key_values_length = past_key_values.get_seq_length()
940
-
941
- if position_ids is None:
942
- device = input_ids.device if input_ids is not None else inputs_embeds.device
943
- position_ids = torch.arange(
944
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
945
- )
946
- position_ids = position_ids.unsqueeze(0)
947
-
948
- if inputs_embeds is None:
949
- inputs_embeds = self.embed_tokens(input_ids)
950
-
951
- if getattr(self.config, "_flash_attn_2_enabled", False):
952
- # 2d mask is passed through the layers
953
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
954
- else:
955
- # 4d mask is passed through the layers
956
- attention_mask = _prepare_4d_causal_attention_mask(
957
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
958
  )
959
-
960
- # embed positions
961
- hidden_states = inputs_embeds
962
-
963
- if self.gradient_checkpointing and self.training:
964
- if use_cache:
965
- logger.warning_once(
966
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
967
- )
968
- use_cache = False
969
-
970
- # decoder layers
971
- all_hidden_states = () if output_hidden_states else None
972
- all_self_attns = () if output_attentions else None
973
- next_decoder_cache = None
974
-
975
- for decoder_layer in self.layers:
976
- if output_hidden_states:
977
- all_hidden_states += (hidden_states,)
978
-
979
- if self.gradient_checkpointing and self.training:
980
- layer_outputs = self._gradient_checkpointing_func(
981
- decoder_layer.__call__,
982
- hidden_states,
983
- attention_mask,
984
- position_ids,
985
- past_key_values,
986
- output_attentions,
987
- use_cache,
988
- )
989
- else:
990
- layer_outputs = decoder_layer(
991
- hidden_states,
992
- attention_mask=attention_mask,
993
- position_ids=position_ids,
994
- past_key_value=past_key_values,
995
- output_attentions=output_attentions,
996
- use_cache=use_cache,
997
- )
998
-
999
- hidden_states = layer_outputs[0]
1000
-
1001
- if use_cache:
1002
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1003
-
1004
- if output_attentions:
1005
- all_self_attns += (layer_outputs[1],)
1006
-
1007
- hidden_states = self.norm(hidden_states)
1008
-
1009
- # add hidden states from the last decoder layer
1010
- if output_hidden_states:
1011
- all_hidden_states += (hidden_states,)
1012
-
1013
- next_cache = None
1014
- if use_cache:
1015
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1016
- if not return_dict:
1017
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1018
- return BaseModelOutputWithPast(
1019
- last_hidden_state=hidden_states,
1020
- past_key_values=next_cache,
1021
- hidden_states=all_hidden_states,
1022
- attentions=all_self_attns,
1023
- )
1024
-
1025
-
1026
- class BitLlamaForCausalLM(BitLlamaPreTrainedModel):
1027
- _tied_weights_keys = ["lm_head.weight"]
1028
-
1029
- def __init__(self, config):
1030
- super().__init__(config)
1031
- self.model = BitLlamaModel(config)
1032
- self.vocab_size = config.vocab_size
1033
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1034
-
1035
- # Initialize weights and apply final processing
1036
- self.post_init()
1037
-
1038
- def get_input_embeddings(self):
1039
- return self.model.embed_tokens
1040
-
1041
- def set_input_embeddings(self, value):
1042
- self.model.embed_tokens = value
1043
-
1044
- def get_output_embeddings(self):
1045
- return self.lm_head
1046
-
1047
- def set_output_embeddings(self, new_embeddings):
1048
- self.lm_head = new_embeddings
1049
-
1050
- def set_decoder(self, decoder):
1051
- self.model = decoder
1052
-
1053
- def get_decoder(self):
1054
- return self.model
1055
-
1056
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1057
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1058
- def forward(
1059
- self,
1060
- input_ids: torch.LongTensor = None,
1061
- attention_mask: Optional[torch.Tensor] = None,
1062
- position_ids: Optional[torch.LongTensor] = None,
1063
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1064
- inputs_embeds: Optional[torch.FloatTensor] = None,
1065
- labels: Optional[torch.LongTensor] = None,
1066
- use_cache: Optional[bool] = None,
1067
- output_attentions: Optional[bool] = None,
1068
- output_hidden_states: Optional[bool] = None,
1069
- return_dict: Optional[bool] = None,
1070
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1071
- r"""
1072
- Args:
1073
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1074
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1075
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1076
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1077
-
1078
- Returns:
1079
-
1080
- Example:
1081
-
1082
- ```python
1083
- >>> from transformers import AutoTokenizer, LlamaForCausalLM
1084
-
1085
- >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1086
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1087
-
1088
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1089
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1090
-
1091
- >>> # Generate
1092
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1093
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1094
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1095
- ```"""
1096
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1097
- output_hidden_states = (
1098
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1099
- )
1100
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1101
-
1102
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1103
- outputs = self.model(
1104
- input_ids=input_ids,
1105
- attention_mask=attention_mask,
1106
- position_ids=position_ids,
1107
- past_key_values=past_key_values,
1108
- inputs_embeds=inputs_embeds,
1109
- use_cache=use_cache,
1110
- output_attentions=output_attentions,
1111
- output_hidden_states=output_hidden_states,
1112
- return_dict=return_dict,
1113
- )
1114
-
1115
- hidden_states = outputs[0]
1116
- if self.config.pretraining_tp > 1:
1117
- lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1118
- logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1119
- logits = torch.cat(logits, dim=-1)
1120
- else:
1121
- logits = self.lm_head(hidden_states)
1122
- logits = logits.float()
1123
-
1124
- loss = None
1125
- if labels is not None:
1126
- # Shift so that tokens < n predict n
1127
- shift_logits = logits[..., :-1, :].contiguous()
1128
- shift_labels = labels[..., 1:].contiguous()
1129
- # Flatten the tokens
1130
- loss_fct = CrossEntropyLoss()
1131
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1132
- shift_labels = shift_labels.view(-1)
1133
- # Enable model parallelism
1134
- shift_labels = shift_labels.to(shift_logits.device)
1135
- loss = loss_fct(shift_logits, shift_labels)
1136
-
1137
- if not return_dict:
1138
- output = (logits,) + outputs[1:]
1139
- return (loss,) + output if loss is not None else output
1140
-
1141
- return CausalLMOutputWithPast(
1142
- loss=loss,
1143
- logits=logits,
1144
- past_key_values=outputs.past_key_values,
1145
- hidden_states=outputs.hidden_states,
1146
- attentions=outputs.attentions,
1147
- )
1148
-
1149
- def prepare_inputs_for_generation(
1150
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1151
- ):
1152
- if past_key_values is not None:
1153
- if isinstance(past_key_values, Cache):
1154
- cache_length = past_key_values.get_seq_length()
1155
- past_length = past_key_values.seen_tokens
1156
- else:
1157
- cache_length = past_length = past_key_values[0][0].shape[2]
1158
-
1159
- # Keep only the unprocessed tokens:
1160
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1161
- # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1162
- # input)
1163
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1164
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1165
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1166
- # input_ids based on the past_length.
1167
- elif past_length < input_ids.shape[1]:
1168
- input_ids = input_ids[:, past_length:]
1169
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1170
-
1171
- # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
1172
- # older attention values, as their corresponding values are not part of the input.
1173
- if cache_length < past_length and attention_mask is not None:
1174
- attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
1175
-
1176
- position_ids = kwargs.get("position_ids", None)
1177
- if attention_mask is not None and position_ids is None:
1178
- # create position_ids on the fly for batch generation
1179
- position_ids = attention_mask.long().cumsum(-1) - 1
1180
- position_ids.masked_fill_(attention_mask == 0, 1)
1181
- if past_key_values:
1182
- position_ids = position_ids[:, -input_ids.shape[1] :]
1183
-
1184
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1185
- if inputs_embeds is not None and past_key_values is None:
1186
- model_inputs = {"inputs_embeds": inputs_embeds}
1187
- else:
1188
- model_inputs = {"input_ids": input_ids}
1189
-
1190
- model_inputs.update(
1191
- {
1192
- "position_ids": position_ids,
1193
- "past_key_values": past_key_values,
1194
- "use_cache": kwargs.get("use_cache"),
1195
- "attention_mask": attention_mask,
1196
- }
1197
- )
1198
- return model_inputs
1199
-
1200
- @staticmethod
1201
- def _reorder_cache(past_key_values, beam_idx):
1202
- reordered_past = ()
1203
- for layer_past in past_key_values:
1204
- reordered_past += (
1205
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1206
  )
1207
- return reordered_past
1208
-
1209
-
1210
- @add_start_docstrings(
1211
- """
1212
- The LLaMa Model transformer with a sequence classification head on top (linear layer).
1213
-
1214
- [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1215
- (e.g. GPT-2) do.
1216
-
1217
- Since it does classification on the last token, it requires to know the position of the last token. If a
1218
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1219
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1220
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1221
- each row of the batch).
1222
- """,
1223
- LLAMA_START_DOCSTRING,
1224
- )
1225
- class BitLlamaForSequenceClassification(BitLlamaPreTrainedModel):
1226
- def __init__(self, config):
1227
- super().__init__(config)
1228
- self.num_labels = config.num_labels
1229
- self.model = BitLlamaModel(config)
1230
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1231
-
1232
- # Initialize weights and apply final processing
1233
- self.post_init()
1234
-
1235
- def get_input_embeddings(self):
1236
- return self.model.embed_tokens
1237
-
1238
- def set_input_embeddings(self, value):
1239
- self.model.embed_tokens = value
1240
-
1241
- @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1242
- def forward(
1243
- self,
1244
- input_ids: torch.LongTensor = None,
1245
- attention_mask: Optional[torch.Tensor] = None,
1246
- position_ids: Optional[torch.LongTensor] = None,
1247
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1248
- inputs_embeds: Optional[torch.FloatTensor] = None,
1249
- labels: Optional[torch.LongTensor] = None,
1250
- use_cache: Optional[bool] = None,
1251
- output_attentions: Optional[bool] = None,
1252
- output_hidden_states: Optional[bool] = None,
1253
- return_dict: Optional[bool] = None,
1254
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1255
- r"""
1256
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1257
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1258
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1259
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1260
- """
1261
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1262
-
1263
- transformer_outputs = self.model(
1264
- input_ids,
1265
- attention_mask=attention_mask,
1266
- position_ids=position_ids,
1267
- past_key_values=past_key_values,
1268
- inputs_embeds=inputs_embeds,
1269
- use_cache=use_cache,
1270
- output_attentions=output_attentions,
1271
- output_hidden_states=output_hidden_states,
1272
- return_dict=return_dict,
1273
- )
1274
- hidden_states = transformer_outputs[0]
1275
- logits = self.score(hidden_states)
1276
-
1277
- if input_ids is not None:
1278
- batch_size = input_ids.shape[0]
1279
- else:
1280
- batch_size = inputs_embeds.shape[0]
1281
-
1282
- if self.config.pad_token_id is None and batch_size != 1:
1283
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1284
- if self.config.pad_token_id is None:
1285
- sequence_lengths = -1
1286
- else:
1287
- if input_ids is not None:
1288
- sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1289
- logits.device
1290
- )
1291
- else:
1292
- sequence_lengths = -1
1293
-
1294
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1295
-
1296
- loss = None
1297
- if labels is not None:
1298
- labels = labels.to(logits.device)
1299
- if self.config.problem_type is None:
1300
- if self.num_labels == 1:
1301
- self.config.problem_type = "regression"
1302
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1303
- self.config.problem_type = "single_label_classification"
1304
- else:
1305
- self.config.problem_type = "multi_label_classification"
1306
-
1307
- if self.config.problem_type == "regression":
1308
- loss_fct = MSELoss()
1309
- if self.num_labels == 1:
1310
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1311
- else:
1312
- loss = loss_fct(pooled_logits, labels)
1313
- elif self.config.problem_type == "single_label_classification":
1314
- loss_fct = CrossEntropyLoss()
1315
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1316
- elif self.config.problem_type == "multi_label_classification":
1317
- loss_fct = BCEWithLogitsLoss()
1318
- loss = loss_fct(pooled_logits, labels)
1319
- if not return_dict:
1320
- output = (pooled_logits,) + transformer_outputs[1:]
1321
- return ((loss,) + output) if loss is not None else output
1322
-
1323
- return SequenceClassifierOutputWithPast(
1324
- loss=loss,
1325
- logits=pooled_logits,
1326
- past_key_values=transformer_outputs.past_key_values,
1327
- hidden_states=transformer_outputs.hidden_states,
1328
- attentions=transformer_outputs.attentions,
1329
- )
 
17
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
  # See the License for the specific language governing permissions and
19
  # limitations under the License.
20
+ """ LLaMA model configuration"""
 
 
 
21
 
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
 
26
  logger = logging.get_logger(__name__)
27
 
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
30
 
31
+ class LlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
 
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
65
+ Llama 2 up to 4096, CodeLlama up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import LlamaModel, LlamaConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = LlamaConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = LlamaModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
  **kwargs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  ):
141
+ self.vocab_size = vocab_size
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+
148
+ # for backward compatibility
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.hidden_act = hidden_act
154
+ self.initializer_range = initializer_range
155
+ self.rms_norm_eps = rms_norm_eps
156
+ self.pretraining_tp = pretraining_tp
157
+ self.use_cache = use_cache
158
+ self.rope_theta = rope_theta
159
+ self.rope_scaling = rope_scaling
160
+ self._rope_scaling_validation()
161
+ self.attention_bias = attention_bias
162
+ self.attention_dropout = attention_dropout
163
+
164
+ super().__init__(
165
+ pad_token_id=pad_token_id,
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ tie_word_embeddings=tie_word_embeddings,
169
+ **kwargs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  )
 
 
 
171
 
172
+ def _rope_scaling_validation(self):
 
 
 
 
 
 
 
 
 
173
  """
174
+ Validate the `rope_scaling` configuration.
 
 
 
 
 
 
 
 
 
 
 
175
  """
176
+ if self.rope_scaling is None:
177
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
 
179
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
180
+ raise ValueError(
181
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
182
+ f"got {self.rope_scaling}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  )
184
+ rope_scaling_type = self.rope_scaling.get("type", None)
185
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
186
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
187
+ raise ValueError(
188
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  )
190
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
191
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")