Update configuration_bitllama.py
Browse files- configuration_bitllama.py +151 -1289
configuration_bitllama.py
CHANGED
@@ -17,1313 +17,175 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""
|
21 |
-
import math
|
22 |
-
import warnings
|
23 |
-
from typing import List, Optional, Tuple, Union
|
24 |
|
25 |
-
import
|
26 |
-
|
27 |
-
import torch.utils.checkpoint
|
28 |
-
from torch import nn
|
29 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
-
|
31 |
-
from transformers.activations import ACT2FN
|
32 |
-
from transformers.cache_utils import Cache, DynamicCache
|
33 |
-
from transformers.modeling_attn_mask_utils import (
|
34 |
-
AttentionMaskConverter,
|
35 |
-
_prepare_4d_attention_mask,
|
36 |
-
_prepare_4d_causal_attention_mask,
|
37 |
-
)
|
38 |
-
from transformers.modeling_outputs import (
|
39 |
-
BaseModelOutputWithPast,
|
40 |
-
CausalLMOutputWithPast,
|
41 |
-
SequenceClassifierOutputWithPast,
|
42 |
-
)
|
43 |
-
from transformers.modeling_utils import PreTrainedModel
|
44 |
-
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
45 |
-
from transformers.utils import (
|
46 |
-
add_start_docstrings,
|
47 |
-
add_start_docstrings_to_model_forward,
|
48 |
-
is_flash_attn_2_available,
|
49 |
-
is_flash_attn_greater_or_equal_2_10,
|
50 |
-
logging,
|
51 |
-
replace_return_docstrings,
|
52 |
-
)
|
53 |
-
from transformers.utils.import_utils import is_torch_fx_available
|
54 |
-
|
55 |
-
from .configuration_bitllama import LlamaConfig
|
56 |
-
|
57 |
-
|
58 |
-
if is_flash_attn_2_available():
|
59 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
61 |
-
|
62 |
-
|
63 |
-
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
64 |
-
# It means that the function will not be traced through and simply appear as a node in the graph.
|
65 |
-
if is_torch_fx_available():
|
66 |
-
if not is_torch_greater_or_equal_than_1_13:
|
67 |
-
import torch.fx
|
68 |
-
|
69 |
-
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
70 |
|
71 |
|
72 |
logger = logging.get_logger(__name__)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
def _get_unpad_data(attention_mask):
|
78 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
79 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
80 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
81 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
82 |
-
return (
|
83 |
-
indices,
|
84 |
-
cu_seqlens,
|
85 |
-
max_seqlen_in_batch,
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
90 |
-
warnings.warn(
|
91 |
-
"Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
92 |
-
)
|
93 |
-
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
94 |
-
|
95 |
-
|
96 |
-
def _make_causal_mask(
|
97 |
-
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
98 |
-
):
|
99 |
-
warnings.warn(
|
100 |
-
"Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
|
101 |
-
)
|
102 |
-
return AttentionMaskConverter._make_causal_mask(
|
103 |
-
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
104 |
-
)
|
105 |
-
|
106 |
-
|
107 |
-
class LlamaRMSNorm(nn.Module):
|
108 |
-
def __init__(self, hidden_size, eps=1e-6):
|
109 |
-
"""
|
110 |
-
LlamaRMSNorm is equivalent to T5LayerNorm
|
111 |
-
"""
|
112 |
-
super().__init__()
|
113 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
114 |
-
self.variance_epsilon = eps
|
115 |
-
|
116 |
-
def forward(self, hidden_states):
|
117 |
-
input_dtype = hidden_states.dtype
|
118 |
-
hidden_states = hidden_states.to(torch.float32)
|
119 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
120 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
121 |
-
return self.weight * hidden_states.to(input_dtype)
|
122 |
-
|
123 |
-
|
124 |
-
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
125 |
-
|
126 |
-
|
127 |
-
class LlamaRotaryEmbedding(nn.Module):
|
128 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
129 |
-
super().__init__()
|
130 |
-
|
131 |
-
self.dim = dim
|
132 |
-
self.max_position_embeddings = max_position_embeddings
|
133 |
-
self.base = base
|
134 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
135 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
136 |
-
|
137 |
-
# Build here to make `torch.jit.trace` work.
|
138 |
-
self._set_cos_sin_cache(
|
139 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
140 |
-
)
|
141 |
-
|
142 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
143 |
-
self.max_seq_len_cached = seq_len
|
144 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
145 |
-
|
146 |
-
freqs = torch.outer(t, self.inv_freq)
|
147 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
-
|
152 |
-
def forward(self, x, seq_len=None):
|
153 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
154 |
-
if seq_len > self.max_seq_len_cached:
|
155 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
156 |
-
|
157 |
-
return (
|
158 |
-
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
159 |
-
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
160 |
-
)
|
161 |
-
|
162 |
-
|
163 |
-
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
164 |
-
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
165 |
-
|
166 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
167 |
-
self.scaling_factor = scaling_factor
|
168 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
169 |
|
170 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
171 |
-
self.max_seq_len_cached = seq_len
|
172 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
173 |
-
t = t / self.scaling_factor
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
|
|
|
|
181 |
|
182 |
-
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
183 |
-
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
184 |
-
|
185 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
186 |
-
self.scaling_factor = scaling_factor
|
187 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
188 |
-
|
189 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
190 |
-
self.max_seq_len_cached = seq_len
|
191 |
-
|
192 |
-
if seq_len > self.max_position_embeddings:
|
193 |
-
base = self.base * (
|
194 |
-
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
195 |
-
) ** (self.dim / (self.dim - 2))
|
196 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
197 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
198 |
-
|
199 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
200 |
-
|
201 |
-
freqs = torch.outer(t, self.inv_freq)
|
202 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
203 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
204 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
205 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
206 |
-
|
207 |
-
|
208 |
-
def rotate_half(x):
|
209 |
-
"""Rotates half the hidden dims of the input."""
|
210 |
-
x1 = x[..., : x.shape[-1] // 2]
|
211 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
212 |
-
return torch.cat((-x2, x1), dim=-1)
|
213 |
-
|
214 |
-
|
215 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
216 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
217 |
|
218 |
Args:
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
the
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
return down_proj
|
296 |
-
|
297 |
-
|
298 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
299 |
-
"""
|
300 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
301 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
302 |
-
"""
|
303 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
304 |
-
if n_rep == 1:
|
305 |
-
return hidden_states
|
306 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
307 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
308 |
-
|
309 |
-
|
310 |
-
class LlamaAttention(nn.Module):
|
311 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
312 |
-
|
313 |
-
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
314 |
-
super().__init__()
|
315 |
-
self.config = config
|
316 |
-
self.layer_idx = layer_idx
|
317 |
-
if layer_idx is None:
|
318 |
-
logger.warning_once(
|
319 |
-
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
320 |
-
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
321 |
-
"when creating this class."
|
322 |
-
)
|
323 |
-
|
324 |
-
self.attention_dropout = config.attention_dropout
|
325 |
-
self.hidden_size = config.hidden_size
|
326 |
-
self.num_heads = config.num_attention_heads
|
327 |
-
self.head_dim = self.hidden_size // self.num_heads
|
328 |
-
self.num_key_value_heads = config.num_key_value_heads
|
329 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
330 |
-
self.max_position_embeddings = config.max_position_embeddings
|
331 |
-
self.rope_theta = config.rope_theta
|
332 |
-
self.is_causal = True
|
333 |
-
|
334 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
335 |
-
raise ValueError(
|
336 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
337 |
-
f" and `num_heads`: {self.num_heads})."
|
338 |
-
)
|
339 |
-
|
340 |
-
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
341 |
-
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
342 |
-
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
343 |
-
self.o_proj = BitLinear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
344 |
-
self._init_rope()
|
345 |
-
|
346 |
-
def _init_rope(self):
|
347 |
-
if self.config.rope_scaling is None:
|
348 |
-
self.rotary_emb = LlamaRotaryEmbedding(
|
349 |
-
self.head_dim,
|
350 |
-
max_position_embeddings=self.max_position_embeddings,
|
351 |
-
base=self.rope_theta,
|
352 |
-
)
|
353 |
-
else:
|
354 |
-
scaling_type = self.config.rope_scaling["type"]
|
355 |
-
scaling_factor = self.config.rope_scaling["factor"]
|
356 |
-
if scaling_type == "linear":
|
357 |
-
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
358 |
-
self.head_dim,
|
359 |
-
max_position_embeddings=self.max_position_embeddings,
|
360 |
-
scaling_factor=scaling_factor,
|
361 |
-
base=self.rope_theta,
|
362 |
-
)
|
363 |
-
elif scaling_type == "dynamic":
|
364 |
-
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
365 |
-
self.head_dim,
|
366 |
-
max_position_embeddings=self.max_position_embeddings,
|
367 |
-
scaling_factor=scaling_factor,
|
368 |
-
base=self.rope_theta,
|
369 |
-
)
|
370 |
-
else:
|
371 |
-
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
372 |
-
|
373 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
374 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
375 |
-
|
376 |
-
def forward(
|
377 |
self,
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
**kwargs,
|
385 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
386 |
-
if "padding_mask" in kwargs:
|
387 |
-
warnings.warn(
|
388 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
389 |
-
)
|
390 |
-
|
391 |
-
bsz, q_len, _ = hidden_states.size()
|
392 |
-
|
393 |
-
if self.config.pretraining_tp > 1:
|
394 |
-
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
395 |
-
query_slices = self.q_proj.weight.split(
|
396 |
-
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
397 |
-
)
|
398 |
-
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
399 |
-
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
400 |
-
|
401 |
-
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
402 |
-
query_states = torch.cat(query_states, dim=-1)
|
403 |
-
|
404 |
-
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
405 |
-
key_states = torch.cat(key_states, dim=-1)
|
406 |
-
|
407 |
-
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
408 |
-
value_states = torch.cat(value_states, dim=-1)
|
409 |
-
|
410 |
-
else:
|
411 |
-
query_states = self.q_proj(hidden_states)
|
412 |
-
key_states = self.k_proj(hidden_states)
|
413 |
-
value_states = self.v_proj(hidden_states)
|
414 |
-
|
415 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
416 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
417 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
418 |
-
|
419 |
-
kv_seq_len = key_states.shape[-2]
|
420 |
-
if past_key_value is not None:
|
421 |
-
if self.layer_idx is None:
|
422 |
-
raise ValueError(
|
423 |
-
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
424 |
-
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
425 |
-
"with a layer index."
|
426 |
-
)
|
427 |
-
kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
|
428 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
429 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
430 |
-
|
431 |
-
if past_key_value is not None:
|
432 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
433 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
434 |
-
|
435 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
436 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
437 |
-
|
438 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
439 |
-
|
440 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
441 |
-
raise ValueError(
|
442 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
443 |
-
f" {attn_weights.size()}"
|
444 |
-
)
|
445 |
-
|
446 |
-
if attention_mask is not None:
|
447 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
448 |
-
raise ValueError(
|
449 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
450 |
-
)
|
451 |
-
attn_weights = attn_weights + attention_mask
|
452 |
-
|
453 |
-
# upcast attention to fp32
|
454 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
455 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
456 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
457 |
-
|
458 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
459 |
-
raise ValueError(
|
460 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
461 |
-
f" {attn_output.size()}"
|
462 |
-
)
|
463 |
-
|
464 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
465 |
-
|
466 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
467 |
-
|
468 |
-
if self.config.pretraining_tp > 1:
|
469 |
-
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
470 |
-
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
471 |
-
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
472 |
-
else:
|
473 |
-
attn_output = self.o_proj(attn_output)
|
474 |
-
|
475 |
-
if not output_attentions:
|
476 |
-
attn_weights = None
|
477 |
-
|
478 |
-
return attn_output, attn_weights, past_key_value
|
479 |
-
|
480 |
-
|
481 |
-
class LlamaFlashAttention2(LlamaAttention):
|
482 |
-
"""
|
483 |
-
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
484 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
485 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
486 |
-
"""
|
487 |
-
|
488 |
-
def __init__(self, *args, **kwargs):
|
489 |
-
super().__init__(*args, **kwargs)
|
490 |
-
|
491 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
492 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
493 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
494 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
495 |
-
|
496 |
-
def forward(
|
497 |
-
self,
|
498 |
-
hidden_states: torch.Tensor,
|
499 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
500 |
-
position_ids: Optional[torch.LongTensor] = None,
|
501 |
-
past_key_value: Optional[Cache] = None,
|
502 |
-
output_attentions: bool = False,
|
503 |
-
use_cache: bool = False,
|
504 |
-
**kwargs,
|
505 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
506 |
-
# LlamaFlashAttention2 attention does not support output_attentions
|
507 |
-
if "padding_mask" in kwargs:
|
508 |
-
warnings.warn(
|
509 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
510 |
-
)
|
511 |
-
|
512 |
-
# overwrite attention_mask with padding_mask
|
513 |
-
attention_mask = kwargs.pop("padding_mask")
|
514 |
-
|
515 |
-
output_attentions = False
|
516 |
-
|
517 |
-
bsz, q_len, _ = hidden_states.size()
|
518 |
-
|
519 |
-
query_states = self.q_proj(hidden_states)
|
520 |
-
key_states = self.k_proj(hidden_states)
|
521 |
-
value_states = self.v_proj(hidden_states)
|
522 |
-
|
523 |
-
# Flash attention requires the input to have the shape
|
524 |
-
# batch_size x seq_length x head_dim x hidden_dim
|
525 |
-
# therefore we just need to keep the original shape
|
526 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
527 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
528 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
529 |
-
|
530 |
-
kv_seq_len = key_states.shape[-2]
|
531 |
-
if past_key_value is not None:
|
532 |
-
kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
|
533 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
534 |
-
|
535 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
536 |
-
|
537 |
-
if past_key_value is not None:
|
538 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
539 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
540 |
-
|
541 |
-
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
542 |
-
# to be able to avoid many of these transpose/reshape/view.
|
543 |
-
query_states = query_states.transpose(1, 2)
|
544 |
-
key_states = key_states.transpose(1, 2)
|
545 |
-
value_states = value_states.transpose(1, 2)
|
546 |
-
|
547 |
-
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
548 |
-
|
549 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
550 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
551 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
552 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
553 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
554 |
-
|
555 |
-
input_dtype = query_states.dtype
|
556 |
-
if input_dtype == torch.float32:
|
557 |
-
# Handle the case where the model is quantized
|
558 |
-
if hasattr(self.config, "_pre_quantization_dtype"):
|
559 |
-
target_dtype = self.config._pre_quantization_dtype
|
560 |
-
else:
|
561 |
-
target_dtype = self.q_proj.weight.dtype
|
562 |
-
|
563 |
-
logger.warning_once(
|
564 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
565 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
566 |
-
f" {target_dtype}."
|
567 |
-
)
|
568 |
-
|
569 |
-
query_states = query_states.to(target_dtype)
|
570 |
-
key_states = key_states.to(target_dtype)
|
571 |
-
value_states = value_states.to(target_dtype)
|
572 |
-
|
573 |
-
attn_output = self._flash_attention_forward(
|
574 |
-
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
575 |
-
)
|
576 |
-
|
577 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
578 |
-
attn_output = self.o_proj(attn_output)
|
579 |
-
|
580 |
-
if not output_attentions:
|
581 |
-
attn_weights = None
|
582 |
-
|
583 |
-
return attn_output, attn_weights, past_key_value
|
584 |
-
|
585 |
-
def _flash_attention_forward(
|
586 |
-
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
587 |
):
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
query_states, key_states, value_states, attention_mask, query_length
|
618 |
-
)
|
619 |
-
|
620 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
621 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
622 |
-
|
623 |
-
attn_output_unpad = flash_attn_varlen_func(
|
624 |
-
query_states,
|
625 |
-
key_states,
|
626 |
-
value_states,
|
627 |
-
cu_seqlens_q=cu_seqlens_q,
|
628 |
-
cu_seqlens_k=cu_seqlens_k,
|
629 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
630 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
631 |
-
dropout_p=dropout,
|
632 |
-
softmax_scale=softmax_scale,
|
633 |
-
causal=causal,
|
634 |
-
)
|
635 |
-
|
636 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
637 |
-
else:
|
638 |
-
attn_output = flash_attn_func(
|
639 |
-
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
640 |
-
)
|
641 |
-
|
642 |
-
return attn_output
|
643 |
-
|
644 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
645 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
646 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
647 |
-
|
648 |
-
key_layer = index_first_axis(
|
649 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
650 |
-
)
|
651 |
-
value_layer = index_first_axis(
|
652 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
653 |
-
)
|
654 |
-
if query_length == kv_seq_len:
|
655 |
-
query_layer = index_first_axis(
|
656 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
657 |
-
)
|
658 |
-
cu_seqlens_q = cu_seqlens_k
|
659 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
660 |
-
indices_q = indices_k
|
661 |
-
elif query_length == 1:
|
662 |
-
max_seqlen_in_batch_q = 1
|
663 |
-
cu_seqlens_q = torch.arange(
|
664 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
665 |
-
) # There is a memcpy here, that is very bad.
|
666 |
-
indices_q = cu_seqlens_q[:-1]
|
667 |
-
query_layer = query_layer.squeeze(1)
|
668 |
-
else:
|
669 |
-
# The -q_len: slice assumes left padding.
|
670 |
-
attention_mask = attention_mask[:, -query_length:]
|
671 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
672 |
-
|
673 |
-
return (
|
674 |
-
query_layer,
|
675 |
-
key_layer,
|
676 |
-
value_layer,
|
677 |
-
indices_q,
|
678 |
-
(cu_seqlens_q, cu_seqlens_k),
|
679 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
680 |
-
)
|
681 |
-
|
682 |
-
|
683 |
-
class LlamaDecoderLayer(nn.Module):
|
684 |
-
def __init__(self, config: LlamaConfig, layer_idx: int):
|
685 |
-
super().__init__()
|
686 |
-
self.hidden_size = config.hidden_size
|
687 |
-
self.self_attn = (
|
688 |
-
LlamaAttention(config=config, layer_idx=layer_idx)
|
689 |
-
if not getattr(config, "_flash_attn_2_enabled", False)
|
690 |
-
else LlamaFlashAttention2(config=config, layer_idx=layer_idx)
|
691 |
)
|
692 |
-
self.mlp = LlamaMLP(config)
|
693 |
-
# self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
694 |
-
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
695 |
|
696 |
-
def
|
697 |
-
self,
|
698 |
-
hidden_states: torch.Tensor,
|
699 |
-
attention_mask: Optional[torch.Tensor] = None,
|
700 |
-
position_ids: Optional[torch.LongTensor] = None,
|
701 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
702 |
-
output_attentions: Optional[bool] = False,
|
703 |
-
use_cache: Optional[bool] = False,
|
704 |
-
**kwargs,
|
705 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
706 |
"""
|
707 |
-
|
708 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
709 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
710 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
711 |
-
query_sequence_length, key_sequence_length)` if default attention is used.
|
712 |
-
output_attentions (`bool`, *optional*):
|
713 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
714 |
-
returned tensors for more detail.
|
715 |
-
use_cache (`bool`, *optional*):
|
716 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
717 |
-
(see `past_key_values`).
|
718 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
719 |
"""
|
720 |
-
if
|
721 |
-
|
722 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
723 |
-
)
|
724 |
-
|
725 |
-
residual = hidden_states
|
726 |
-
|
727 |
-
# hidden_states = self.input_layernorm(hidden_states)
|
728 |
-
|
729 |
-
# Self Attention
|
730 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
731 |
-
hidden_states=hidden_states,
|
732 |
-
attention_mask=attention_mask,
|
733 |
-
position_ids=position_ids,
|
734 |
-
past_key_value=past_key_value,
|
735 |
-
output_attentions=output_attentions,
|
736 |
-
use_cache=use_cache,
|
737 |
-
**kwargs,
|
738 |
-
)
|
739 |
-
hidden_states = residual + hidden_states
|
740 |
-
|
741 |
-
# Fully Connected
|
742 |
-
residual = hidden_states
|
743 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
744 |
-
hidden_states = self.mlp(hidden_states)
|
745 |
-
hidden_states = residual + hidden_states
|
746 |
-
|
747 |
-
outputs = (hidden_states,)
|
748 |
-
|
749 |
-
if output_attentions:
|
750 |
-
outputs += (self_attn_weights,)
|
751 |
-
|
752 |
-
if use_cache:
|
753 |
-
outputs += (present_key_value,)
|
754 |
-
|
755 |
-
return outputs
|
756 |
-
|
757 |
-
|
758 |
-
LLAMA_START_DOCSTRING = r"""
|
759 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
760 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
761 |
-
etc.)
|
762 |
-
|
763 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
764 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
765 |
-
and behavior.
|
766 |
-
|
767 |
-
Parameters:
|
768 |
-
config ([`LlamaConfig`]):
|
769 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
770 |
-
load the weights associated with the model, only the configuration. Check out the
|
771 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
772 |
-
"""
|
773 |
-
|
774 |
-
|
775 |
-
@add_start_docstrings(
|
776 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
777 |
-
LLAMA_START_DOCSTRING,
|
778 |
-
)
|
779 |
-
class BitLlamaPreTrainedModel(PreTrainedModel):
|
780 |
-
config_class = LlamaConfig
|
781 |
-
base_model_prefix = "model"
|
782 |
-
supports_gradient_checkpointing = True
|
783 |
-
_no_split_modules = ["LlamaDecoderLayer"]
|
784 |
-
_skip_keys_device_placement = "past_key_values"
|
785 |
-
_supports_flash_attn_2 = True
|
786 |
-
_supports_cache_class = True
|
787 |
-
|
788 |
-
def _init_weights(self, module):
|
789 |
-
std = self.config.initializer_range
|
790 |
-
if isinstance(module, BitLinear):
|
791 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
792 |
-
if module.bias is not None:
|
793 |
-
module.bias.data.zero_()
|
794 |
-
elif isinstance(module, nn.Embedding):
|
795 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
796 |
-
if module.padding_idx is not None:
|
797 |
-
module.weight.data[module.padding_idx].zero_()
|
798 |
-
|
799 |
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
it.
|
805 |
-
|
806 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
807 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
808 |
-
|
809 |
-
[What are input IDs?](../glossary#input-ids)
|
810 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
811 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
812 |
-
|
813 |
-
- 1 for tokens that are **not masked**,
|
814 |
-
- 0 for tokens that are **masked**.
|
815 |
-
|
816 |
-
[What are attention masks?](../glossary#attention-mask)
|
817 |
-
|
818 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
819 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
820 |
-
|
821 |
-
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
822 |
-
`past_key_values`).
|
823 |
-
|
824 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
825 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
826 |
-
information on the default strategy.
|
827 |
-
|
828 |
-
- 1 indicates the head is **not masked**,
|
829 |
-
- 0 indicates the head is **masked**.
|
830 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
831 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
832 |
-
config.n_positions - 1]`.
|
833 |
-
|
834 |
-
[What are position IDs?](../glossary#position-ids)
|
835 |
-
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
836 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
837 |
-
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
838 |
-
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
839 |
-
|
840 |
-
Two formats are allowed:
|
841 |
-
- a [`~cache_utils.Cache`] instance;
|
842 |
-
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
843 |
-
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
844 |
-
cache format.
|
845 |
-
|
846 |
-
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
847 |
-
legacy cache format will be returned.
|
848 |
-
|
849 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
850 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
851 |
-
of shape `(batch_size, sequence_length)`.
|
852 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
853 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
854 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
855 |
-
model's internal embedding lookup matrix.
|
856 |
-
use_cache (`bool`, *optional*):
|
857 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
858 |
-
`past_key_values`).
|
859 |
-
output_attentions (`bool`, *optional*):
|
860 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
861 |
-
tensors for more detail.
|
862 |
-
output_hidden_states (`bool`, *optional*):
|
863 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
864 |
-
more detail.
|
865 |
-
return_dict (`bool`, *optional*):
|
866 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
867 |
-
"""
|
868 |
-
|
869 |
-
|
870 |
-
@add_start_docstrings(
|
871 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
872 |
-
LLAMA_START_DOCSTRING,
|
873 |
-
)
|
874 |
-
class BitLlamaModel(BitLlamaPreTrainedModel):
|
875 |
-
"""
|
876 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
877 |
-
|
878 |
-
Args:
|
879 |
-
config: LlamaConfig
|
880 |
-
"""
|
881 |
-
|
882 |
-
def __init__(self, config: LlamaConfig):
|
883 |
-
super().__init__(config)
|
884 |
-
self.padding_idx = config.pad_token_id
|
885 |
-
self.vocab_size = config.vocab_size
|
886 |
-
|
887 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
888 |
-
self.layers = nn.ModuleList(
|
889 |
-
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
890 |
-
)
|
891 |
-
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
892 |
-
|
893 |
-
self.gradient_checkpointing = False
|
894 |
-
# Initialize weights and apply final processing
|
895 |
-
self.post_init()
|
896 |
-
|
897 |
-
def get_input_embeddings(self):
|
898 |
-
return self.embed_tokens
|
899 |
-
|
900 |
-
def set_input_embeddings(self, value):
|
901 |
-
self.embed_tokens = value
|
902 |
-
|
903 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
904 |
-
def forward(
|
905 |
-
self,
|
906 |
-
input_ids: torch.LongTensor = None,
|
907 |
-
attention_mask: Optional[torch.Tensor] = None,
|
908 |
-
position_ids: Optional[torch.LongTensor] = None,
|
909 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
910 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
911 |
-
use_cache: Optional[bool] = None,
|
912 |
-
output_attentions: Optional[bool] = None,
|
913 |
-
output_hidden_states: Optional[bool] = None,
|
914 |
-
return_dict: Optional[bool] = None,
|
915 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
916 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
917 |
-
output_hidden_states = (
|
918 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
919 |
-
)
|
920 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
921 |
-
|
922 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
923 |
-
|
924 |
-
# retrieve input_ids and inputs_embeds
|
925 |
-
if input_ids is not None and inputs_embeds is not None:
|
926 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
927 |
-
elif input_ids is not None:
|
928 |
-
batch_size, seq_length = input_ids.shape[:2]
|
929 |
-
elif inputs_embeds is not None:
|
930 |
-
batch_size, seq_length = inputs_embeds.shape[:2]
|
931 |
-
else:
|
932 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
933 |
-
|
934 |
-
past_key_values_length = 0
|
935 |
-
if use_cache:
|
936 |
-
use_legacy_cache = not isinstance(past_key_values, Cache)
|
937 |
-
if use_legacy_cache:
|
938 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
939 |
-
past_key_values_length = past_key_values.get_seq_length()
|
940 |
-
|
941 |
-
if position_ids is None:
|
942 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
943 |
-
position_ids = torch.arange(
|
944 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
945 |
-
)
|
946 |
-
position_ids = position_ids.unsqueeze(0)
|
947 |
-
|
948 |
-
if inputs_embeds is None:
|
949 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
950 |
-
|
951 |
-
if getattr(self.config, "_flash_attn_2_enabled", False):
|
952 |
-
# 2d mask is passed through the layers
|
953 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
954 |
-
else:
|
955 |
-
# 4d mask is passed through the layers
|
956 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
957 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
958 |
)
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
if use_cache:
|
965 |
-
logger.warning_once(
|
966 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
967 |
-
)
|
968 |
-
use_cache = False
|
969 |
-
|
970 |
-
# decoder layers
|
971 |
-
all_hidden_states = () if output_hidden_states else None
|
972 |
-
all_self_attns = () if output_attentions else None
|
973 |
-
next_decoder_cache = None
|
974 |
-
|
975 |
-
for decoder_layer in self.layers:
|
976 |
-
if output_hidden_states:
|
977 |
-
all_hidden_states += (hidden_states,)
|
978 |
-
|
979 |
-
if self.gradient_checkpointing and self.training:
|
980 |
-
layer_outputs = self._gradient_checkpointing_func(
|
981 |
-
decoder_layer.__call__,
|
982 |
-
hidden_states,
|
983 |
-
attention_mask,
|
984 |
-
position_ids,
|
985 |
-
past_key_values,
|
986 |
-
output_attentions,
|
987 |
-
use_cache,
|
988 |
-
)
|
989 |
-
else:
|
990 |
-
layer_outputs = decoder_layer(
|
991 |
-
hidden_states,
|
992 |
-
attention_mask=attention_mask,
|
993 |
-
position_ids=position_ids,
|
994 |
-
past_key_value=past_key_values,
|
995 |
-
output_attentions=output_attentions,
|
996 |
-
use_cache=use_cache,
|
997 |
-
)
|
998 |
-
|
999 |
-
hidden_states = layer_outputs[0]
|
1000 |
-
|
1001 |
-
if use_cache:
|
1002 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1003 |
-
|
1004 |
-
if output_attentions:
|
1005 |
-
all_self_attns += (layer_outputs[1],)
|
1006 |
-
|
1007 |
-
hidden_states = self.norm(hidden_states)
|
1008 |
-
|
1009 |
-
# add hidden states from the last decoder layer
|
1010 |
-
if output_hidden_states:
|
1011 |
-
all_hidden_states += (hidden_states,)
|
1012 |
-
|
1013 |
-
next_cache = None
|
1014 |
-
if use_cache:
|
1015 |
-
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1016 |
-
if not return_dict:
|
1017 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1018 |
-
return BaseModelOutputWithPast(
|
1019 |
-
last_hidden_state=hidden_states,
|
1020 |
-
past_key_values=next_cache,
|
1021 |
-
hidden_states=all_hidden_states,
|
1022 |
-
attentions=all_self_attns,
|
1023 |
-
)
|
1024 |
-
|
1025 |
-
|
1026 |
-
class BitLlamaForCausalLM(BitLlamaPreTrainedModel):
|
1027 |
-
_tied_weights_keys = ["lm_head.weight"]
|
1028 |
-
|
1029 |
-
def __init__(self, config):
|
1030 |
-
super().__init__(config)
|
1031 |
-
self.model = BitLlamaModel(config)
|
1032 |
-
self.vocab_size = config.vocab_size
|
1033 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1034 |
-
|
1035 |
-
# Initialize weights and apply final processing
|
1036 |
-
self.post_init()
|
1037 |
-
|
1038 |
-
def get_input_embeddings(self):
|
1039 |
-
return self.model.embed_tokens
|
1040 |
-
|
1041 |
-
def set_input_embeddings(self, value):
|
1042 |
-
self.model.embed_tokens = value
|
1043 |
-
|
1044 |
-
def get_output_embeddings(self):
|
1045 |
-
return self.lm_head
|
1046 |
-
|
1047 |
-
def set_output_embeddings(self, new_embeddings):
|
1048 |
-
self.lm_head = new_embeddings
|
1049 |
-
|
1050 |
-
def set_decoder(self, decoder):
|
1051 |
-
self.model = decoder
|
1052 |
-
|
1053 |
-
def get_decoder(self):
|
1054 |
-
return self.model
|
1055 |
-
|
1056 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1057 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1058 |
-
def forward(
|
1059 |
-
self,
|
1060 |
-
input_ids: torch.LongTensor = None,
|
1061 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1062 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1063 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1064 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1065 |
-
labels: Optional[torch.LongTensor] = None,
|
1066 |
-
use_cache: Optional[bool] = None,
|
1067 |
-
output_attentions: Optional[bool] = None,
|
1068 |
-
output_hidden_states: Optional[bool] = None,
|
1069 |
-
return_dict: Optional[bool] = None,
|
1070 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1071 |
-
r"""
|
1072 |
-
Args:
|
1073 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1074 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1075 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1076 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1077 |
-
|
1078 |
-
Returns:
|
1079 |
-
|
1080 |
-
Example:
|
1081 |
-
|
1082 |
-
```python
|
1083 |
-
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1084 |
-
|
1085 |
-
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1086 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1087 |
-
|
1088 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1089 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1090 |
-
|
1091 |
-
>>> # Generate
|
1092 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1093 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1094 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1095 |
-
```"""
|
1096 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1097 |
-
output_hidden_states = (
|
1098 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1099 |
-
)
|
1100 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1101 |
-
|
1102 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1103 |
-
outputs = self.model(
|
1104 |
-
input_ids=input_ids,
|
1105 |
-
attention_mask=attention_mask,
|
1106 |
-
position_ids=position_ids,
|
1107 |
-
past_key_values=past_key_values,
|
1108 |
-
inputs_embeds=inputs_embeds,
|
1109 |
-
use_cache=use_cache,
|
1110 |
-
output_attentions=output_attentions,
|
1111 |
-
output_hidden_states=output_hidden_states,
|
1112 |
-
return_dict=return_dict,
|
1113 |
-
)
|
1114 |
-
|
1115 |
-
hidden_states = outputs[0]
|
1116 |
-
if self.config.pretraining_tp > 1:
|
1117 |
-
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1118 |
-
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1119 |
-
logits = torch.cat(logits, dim=-1)
|
1120 |
-
else:
|
1121 |
-
logits = self.lm_head(hidden_states)
|
1122 |
-
logits = logits.float()
|
1123 |
-
|
1124 |
-
loss = None
|
1125 |
-
if labels is not None:
|
1126 |
-
# Shift so that tokens < n predict n
|
1127 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
1128 |
-
shift_labels = labels[..., 1:].contiguous()
|
1129 |
-
# Flatten the tokens
|
1130 |
-
loss_fct = CrossEntropyLoss()
|
1131 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1132 |
-
shift_labels = shift_labels.view(-1)
|
1133 |
-
# Enable model parallelism
|
1134 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
1135 |
-
loss = loss_fct(shift_logits, shift_labels)
|
1136 |
-
|
1137 |
-
if not return_dict:
|
1138 |
-
output = (logits,) + outputs[1:]
|
1139 |
-
return (loss,) + output if loss is not None else output
|
1140 |
-
|
1141 |
-
return CausalLMOutputWithPast(
|
1142 |
-
loss=loss,
|
1143 |
-
logits=logits,
|
1144 |
-
past_key_values=outputs.past_key_values,
|
1145 |
-
hidden_states=outputs.hidden_states,
|
1146 |
-
attentions=outputs.attentions,
|
1147 |
-
)
|
1148 |
-
|
1149 |
-
def prepare_inputs_for_generation(
|
1150 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1151 |
-
):
|
1152 |
-
if past_key_values is not None:
|
1153 |
-
if isinstance(past_key_values, Cache):
|
1154 |
-
cache_length = past_key_values.get_seq_length()
|
1155 |
-
past_length = past_key_values.seen_tokens
|
1156 |
-
else:
|
1157 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
1158 |
-
|
1159 |
-
# Keep only the unprocessed tokens:
|
1160 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1161 |
-
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1162 |
-
# input)
|
1163 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1164 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1165 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1166 |
-
# input_ids based on the past_length.
|
1167 |
-
elif past_length < input_ids.shape[1]:
|
1168 |
-
input_ids = input_ids[:, past_length:]
|
1169 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1170 |
-
|
1171 |
-
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
1172 |
-
# older attention values, as their corresponding values are not part of the input.
|
1173 |
-
if cache_length < past_length and attention_mask is not None:
|
1174 |
-
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
1175 |
-
|
1176 |
-
position_ids = kwargs.get("position_ids", None)
|
1177 |
-
if attention_mask is not None and position_ids is None:
|
1178 |
-
# create position_ids on the fly for batch generation
|
1179 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1180 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1181 |
-
if past_key_values:
|
1182 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1183 |
-
|
1184 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1185 |
-
if inputs_embeds is not None and past_key_values is None:
|
1186 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
1187 |
-
else:
|
1188 |
-
model_inputs = {"input_ids": input_ids}
|
1189 |
-
|
1190 |
-
model_inputs.update(
|
1191 |
-
{
|
1192 |
-
"position_ids": position_ids,
|
1193 |
-
"past_key_values": past_key_values,
|
1194 |
-
"use_cache": kwargs.get("use_cache"),
|
1195 |
-
"attention_mask": attention_mask,
|
1196 |
-
}
|
1197 |
-
)
|
1198 |
-
return model_inputs
|
1199 |
-
|
1200 |
-
@staticmethod
|
1201 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1202 |
-
reordered_past = ()
|
1203 |
-
for layer_past in past_key_values:
|
1204 |
-
reordered_past += (
|
1205 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1206 |
)
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
@add_start_docstrings(
|
1211 |
-
"""
|
1212 |
-
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1213 |
-
|
1214 |
-
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1215 |
-
(e.g. GPT-2) do.
|
1216 |
-
|
1217 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1218 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1219 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1220 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1221 |
-
each row of the batch).
|
1222 |
-
""",
|
1223 |
-
LLAMA_START_DOCSTRING,
|
1224 |
-
)
|
1225 |
-
class BitLlamaForSequenceClassification(BitLlamaPreTrainedModel):
|
1226 |
-
def __init__(self, config):
|
1227 |
-
super().__init__(config)
|
1228 |
-
self.num_labels = config.num_labels
|
1229 |
-
self.model = BitLlamaModel(config)
|
1230 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1231 |
-
|
1232 |
-
# Initialize weights and apply final processing
|
1233 |
-
self.post_init()
|
1234 |
-
|
1235 |
-
def get_input_embeddings(self):
|
1236 |
-
return self.model.embed_tokens
|
1237 |
-
|
1238 |
-
def set_input_embeddings(self, value):
|
1239 |
-
self.model.embed_tokens = value
|
1240 |
-
|
1241 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1242 |
-
def forward(
|
1243 |
-
self,
|
1244 |
-
input_ids: torch.LongTensor = None,
|
1245 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1246 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1247 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1248 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1249 |
-
labels: Optional[torch.LongTensor] = None,
|
1250 |
-
use_cache: Optional[bool] = None,
|
1251 |
-
output_attentions: Optional[bool] = None,
|
1252 |
-
output_hidden_states: Optional[bool] = None,
|
1253 |
-
return_dict: Optional[bool] = None,
|
1254 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1255 |
-
r"""
|
1256 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1257 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1258 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1259 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1260 |
-
"""
|
1261 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1262 |
-
|
1263 |
-
transformer_outputs = self.model(
|
1264 |
-
input_ids,
|
1265 |
-
attention_mask=attention_mask,
|
1266 |
-
position_ids=position_ids,
|
1267 |
-
past_key_values=past_key_values,
|
1268 |
-
inputs_embeds=inputs_embeds,
|
1269 |
-
use_cache=use_cache,
|
1270 |
-
output_attentions=output_attentions,
|
1271 |
-
output_hidden_states=output_hidden_states,
|
1272 |
-
return_dict=return_dict,
|
1273 |
-
)
|
1274 |
-
hidden_states = transformer_outputs[0]
|
1275 |
-
logits = self.score(hidden_states)
|
1276 |
-
|
1277 |
-
if input_ids is not None:
|
1278 |
-
batch_size = input_ids.shape[0]
|
1279 |
-
else:
|
1280 |
-
batch_size = inputs_embeds.shape[0]
|
1281 |
-
|
1282 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
1283 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1284 |
-
if self.config.pad_token_id is None:
|
1285 |
-
sequence_lengths = -1
|
1286 |
-
else:
|
1287 |
-
if input_ids is not None:
|
1288 |
-
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1289 |
-
logits.device
|
1290 |
-
)
|
1291 |
-
else:
|
1292 |
-
sequence_lengths = -1
|
1293 |
-
|
1294 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1295 |
-
|
1296 |
-
loss = None
|
1297 |
-
if labels is not None:
|
1298 |
-
labels = labels.to(logits.device)
|
1299 |
-
if self.config.problem_type is None:
|
1300 |
-
if self.num_labels == 1:
|
1301 |
-
self.config.problem_type = "regression"
|
1302 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1303 |
-
self.config.problem_type = "single_label_classification"
|
1304 |
-
else:
|
1305 |
-
self.config.problem_type = "multi_label_classification"
|
1306 |
-
|
1307 |
-
if self.config.problem_type == "regression":
|
1308 |
-
loss_fct = MSELoss()
|
1309 |
-
if self.num_labels == 1:
|
1310 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1311 |
-
else:
|
1312 |
-
loss = loss_fct(pooled_logits, labels)
|
1313 |
-
elif self.config.problem_type == "single_label_classification":
|
1314 |
-
loss_fct = CrossEntropyLoss()
|
1315 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1316 |
-
elif self.config.problem_type == "multi_label_classification":
|
1317 |
-
loss_fct = BCEWithLogitsLoss()
|
1318 |
-
loss = loss_fct(pooled_logits, labels)
|
1319 |
-
if not return_dict:
|
1320 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
1321 |
-
return ((loss,) + output) if loss is not None else output
|
1322 |
-
|
1323 |
-
return SequenceClassifierOutputWithPast(
|
1324 |
-
loss=loss,
|
1325 |
-
logits=pooled_logits,
|
1326 |
-
past_key_values=transformer_outputs.past_key_values,
|
1327 |
-
hidden_states=transformer_outputs.hidden_states,
|
1328 |
-
attentions=transformer_outputs.attentions,
|
1329 |
-
)
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
|
|
|
|
|
|
21 |
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
class LlamaConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
64 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
65 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
81 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to tie weight embeddings
|
86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
87 |
+
The base period of the RoPE embeddings.
|
88 |
+
rope_scaling (`Dict`, *optional*):
|
89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
93 |
+
these scaling strategies behave:
|
94 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
95 |
+
experimental feature, subject to breaking API changes in future versions.
|
96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
98 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
99 |
+
The dropout ratio for the attention probabilities.
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
103 |
+
|
104 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
105 |
+
>>> configuration = LlamaConfig()
|
106 |
+
|
107 |
+
>>> # Initializing a model from the llama-7b style configuration
|
108 |
+
>>> model = LlamaModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "llama"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
self,
|
119 |
+
vocab_size=32000,
|
120 |
+
hidden_size=4096,
|
121 |
+
intermediate_size=11008,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
hidden_act="silu",
|
126 |
+
max_position_embeddings=2048,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-6,
|
129 |
+
use_cache=True,
|
130 |
+
pad_token_id=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=2,
|
133 |
+
pretraining_tp=1,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
attention_bias=False,
|
138 |
+
attention_dropout=0.0,
|
139 |
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.intermediate_size = intermediate_size
|
145 |
+
self.num_hidden_layers = num_hidden_layers
|
146 |
+
self.num_attention_heads = num_attention_heads
|
147 |
+
|
148 |
+
# for backward compatibility
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.hidden_act = hidden_act
|
154 |
+
self.initializer_range = initializer_range
|
155 |
+
self.rms_norm_eps = rms_norm_eps
|
156 |
+
self.pretraining_tp = pretraining_tp
|
157 |
+
self.use_cache = use_cache
|
158 |
+
self.rope_theta = rope_theta
|
159 |
+
self.rope_scaling = rope_scaling
|
160 |
+
self._rope_scaling_validation()
|
161 |
+
self.attention_bias = attention_bias
|
162 |
+
self.attention_dropout = attention_dropout
|
163 |
+
|
164 |
+
super().__init__(
|
165 |
+
pad_token_id=pad_token_id,
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
tie_word_embeddings=tie_word_embeddings,
|
169 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
)
|
|
|
|
|
|
|
171 |
|
172 |
+
def _rope_scaling_validation(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
"""
|
174 |
+
Validate the `rope_scaling` configuration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"""
|
176 |
+
if self.rope_scaling is None:
|
177 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
180 |
+
raise ValueError(
|
181 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
182 |
+
f"got {self.rope_scaling}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
)
|
184 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
185 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
186 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
187 |
+
raise ValueError(
|
188 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
)
|
190 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
191 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|