File size: 2,471 Bytes
2a0c2db
 
1f5dd07
 
 
 
 
2a0c2db
 
f042ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0c2db
 
34cfce2
 
 
2a0c2db
f3e658f
2a0c2db
34cfce2
2a0c2db
 
 
 
 
 
 
 
 
 
 
be93480
 
 
 
2a0c2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cfce2
97ed842
 
424677e
59f4020
424677e
2a0c2db
 
e6aafd2
5ac9843
 
 
6bb0095
 
5ac9843
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: cc
tags:
  - text-to-image
  - lora
  - diffusers
  - template:sd-lora
base_model:
- black-forest-labs/FLUX.1-dev
widget:
  - text: brazil
    output:
      url: images/brazil.png
  - text: canada, geoguessr
    output:
      url: images/canada.png
  - text: mongolia
    output:
      url: images/mongolia.png
  - text: serbia village
    output:
      url: images/serbia.png
  - text: thailand
    output:
      url: images/thailand.png
---

# fake geoguessr locations lora for flux-dev

https://x.com/_lyraaaa_/status/1841762752404369745

rank 32, trained for 3500 steps on over 200 labeled locations. trigger word ("geoguessr") not always necessary, just name a location

**run this with diffusers:**

```py
import torch
from diffusers import FluxPipeline
import time
import random

# initialize pipeline and lora
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")

lora_weight = 0.8
pipe.load_lora_weights(
    '/workspace/geoguessr_v1_000003500.safetensors',
    adapter_name='geoguessr_v1'
)
pipe.set_adapters('geoguessr_v1', adapter_weights=[lora_weight])

# set params and generate
seed = -1
seed = seed if seed != -1 else random.randint(0, 2**32)
print(seed)

prompt = "sweden, snow"
out = pipe(
    prompt=prompt,
    guidance_scale=4,
    height=624,
    width=960,
    num_inference_steps=40,
    generator=torch.Generator("cuda").manual_seed(seed),
).images[0]

# save and display output
filename=f"{time.time()}.png"
out.save(filename)

from IPython.display import Image, display
display(Image(filename=filename))

```

**known model biases:**
- v1 of this model leans heavily towards rural locations due to dataset bias, will be fixed in v2 as i collect more data
- it managed to generalize to locations not available on geoguessr, like china, although it drifts towards generic locations
- its trained on lowercase country names, and flux is case sensitive. results may vary
- it LOVES orange/red dirt colors. this will be fixed in v2 also

geoguessr_v2 with a much larger dataset and less location bias will be out eventually.

since i do not own the data for this model, i can't really claim ownership of the model itself either. have fun!

<Gallery />

trained with https://github.com/ostris/ai-toolkit/blob/main/notebooks/FLUX_1_dev_LoRA_Training.ipynb

this model is a part of my much larger desterilizer project- a bit more here https://x.com/_lyraaaa_/status/1824003678086590646