bliebfl commited on
Commit
4f96cae
1 Parent(s): faa509d

Model save

Browse files
Files changed (1) hide show
  1. README.md +28 -1
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
 
8
  model-index:
9
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +31,9 @@ should probably proofread and complete it, then remove this comment. -->
16
  # swin-tiny-patch4-window7-224-finetuned-eurosat
17
 
18
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
 
 
 
19
 
20
  ## Model description
21
 
@@ -45,6 +63,15 @@ The following hyperparameters were used during training:
45
  - lr_scheduler_warmup_ratio: 0.1
46
  - num_epochs: 3
47
 
 
 
 
 
 
 
 
 
 
48
  ### Framework versions
49
 
50
  - Transformers 4.36.1
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8155574762316335
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
  # swin-tiny-patch4-window7-224-finetuned-eurosat
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.9371
36
+ - Accuracy: 0.8156
37
 
38
  ## Model description
39
 
 
63
  - lr_scheduler_warmup_ratio: 0.1
64
  - num_epochs: 3
65
 
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.9174 | 1.0 | 406 | 1.3901 | 0.7210 |
71
+ | 1.5653 | 2.0 | 813 | 1.0358 | 0.7938 |
72
+ | 1.4324 | 2.99 | 1218 | 0.9371 | 0.8156 |
73
+
74
+
75
  ### Framework versions
76
 
77
  - Transformers 4.36.1