--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9403630077787382 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3101 - Accuracy: 0.9404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5645 | 1.0 | 406 | 1.0880 | 0.7905 | | 1.3126 | 2.0 | 813 | 0.7987 | 0.8399 | | 1.2335 | 3.0 | 1220 | 0.6398 | 0.8742 | | 1.1244 | 4.0 | 1627 | 0.4977 | 0.9041 | | 0.9785 | 5.0 | 2033 | 0.4473 | 0.9139 | | 0.9625 | 6.0 | 2440 | 0.3930 | 0.9200 | | 0.8414 | 7.0 | 2847 | 0.3538 | 0.9328 | | 0.8336 | 8.0 | 3254 | 0.3333 | 0.9334 | | 0.758 | 9.0 | 3660 | 0.3181 | 0.9405 | | 0.7343 | 9.98 | 4060 | 0.3101 | 0.9404 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0