File size: 2,152 Bytes
c58c395 3626d94 c58c395 3626d94 c58c395 3626d94 c58c395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-kinetics-finetuned-round2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-kinetics-finetuned-round2
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4130
- Accuracy: 0.8846
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1804
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7036 | 0.09 | 165 | 1.0471 | 0.7005 |
| 0.4684 | 1.09 | 330 | 0.5678 | 0.8214 |
| 0.4301 | 2.09 | 495 | 0.7029 | 0.7857 |
| 0.1361 | 3.09 | 660 | 0.4828 | 0.8599 |
| 0.0118 | 4.09 | 825 | 0.5531 | 0.8324 |
| 0.0721 | 5.09 | 990 | 0.3536 | 0.8956 |
| 0.001 | 6.09 | 1155 | 0.4194 | 0.8929 |
| 0.0017 | 7.09 | 1320 | 0.3476 | 0.9038 |
| 0.0007 | 8.09 | 1485 | 0.4356 | 0.8819 |
| 0.0008 | 9.09 | 1650 | 0.4232 | 0.8874 |
| 0.0007 | 10.09 | 1804 | 0.4130 | 0.8846 |
### Framework versions
- Transformers 4.38.2
- Pytorch 1.13.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2
|