File size: 88,923 Bytes
a16da11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
---
base_model: bobox/DeBERTa-small-ST-v1-test-step3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:260034
- loss:CachedGISTEmbedLoss
widget:
- source_sentence: who used to present one man and his dog
sentences:
- One Man and His Dog One Man and His Dog is a BBC television series in the United
Kingdom featuring sheepdog trials, originally presented by Phil Drabble, with
commentary by Eric Halsall and, later, by Ray Ollerenshaw. It was first aired
on 17 February 1976 and continues today (since 2013) as a special annual edition
of Countryfile. In 1994, Robin Page replaced Drabble as the main presenter. Gus
Dermody took over as commentator until 2012.
- 'animal adjectives [was: ratto, Ratte, raton] - Google Groups animal adjectives
[was: ratto, Ratte, raton] Showing 1-9 of 9 messages While trying find the pronunciation
of the word "munger", I encountered the nearby word murine [MYOO-ryn] = relating
to mice or rats [from Latin _murinus_, which derives from _mus_, mouse,
whose genetive form is _muris_] So if you need an adjective to refer to lab rodents
like _ratto_ or _mausu_, "murine" it is. (I would never have discovered this except
in an alphabetically arranged dictionary.) There are a lot of animal adjectives
of this type, such as ovine (sheep), equine (horse), bovine (bull, cow, calf),
aquiline (eagle), murine (rats and mice). But what is needed is a way to lookup
an animal and find what the proper adjective is. For example, is there an adjective
form for "goat"? for "seal"? for "elephant"? for "whale"? for "walrus"? By the
way, I never did find out how "munger" is pronounced; the answer is not found
in'
- A boat is docked and filled with bicycles next to a grassy area on a body of water.
- source_sentence: There were 29 Muslims fatalities in the Cave of the Patriarchs
massacre .
sentences:
- 'Urban Dictionary: Dog and Bone Dog and Bone Cockney rhyming slang for phone -
the telephone. ''''Pick up the dog and bone now'''' by Brendan April 05, 2003
Create a mug The Urban Dictionary Mug One side has the word, one side has the
definition. Microwave and dishwasher safe. Lotsa space for your liquids. Buy the
t-shirt The Urban Dictionary T-Shirt Smooth, soft, slim fit American Apparel shirt.
Custom printed. 100% fine jersey cotton, except for heather grey (90% cotton).
^Same as above except can be shortened further to ''Dogs'' or just ''dog'' Get
on the dogs and give us a bell when your ready. by Phaze October 14, 2004'
- RAF College Cranwell - Local Area Information RAF College Cranwell Local Area
Information Local Area Information RAF College Cranwell is situated in the North
Kesteven District Council area in the heart of rural Lincolnshire, 5 miles from
Sleaford and 14 miles from the City of Lincoln, surrounded by bustling market
towns, picturesque villages and landscapes steeped in aviation history. Lincolnshire
is currently home to several operational RAF airfields and was a key location
during WWII for bomber stations. Museums, memorials, former airfields, heritage
and visitor centres bear witness to the bravery of the men and women of this time.
The ancient City of Lincoln dates back at least to Roman times and boasts a spectacular
Cathedral and Castle area, whilst Sleaford is the home to the National Centre
for Craft & Design. Please click on the Logo to access website
- 29 Muslims were killed and more than 100 others wounded . [ Settlers remember
gunman Goldstein ; Hebron riots continue ] .
- source_sentence: What requires energy for growth?
sentences:
- "an organism requires energy for growth. Fish Fish are the ultimate aquatic organism.\
\ \n a fish require energy for growth"
- In August , after the end of the war in June 1902 , Higgins Southampton left the
`` SSBavarian '' and returned to Cape Town the following month .
- Rhinestone Cowboy "Rhinestone Cowboy" is a song written by Larry Weiss and most
famously recorded by American country music singer Glen Campbell. The song enjoyed
huge popularity with both country and pop audiences when it was released in 1975.
- source_sentence: Burning wood is used to produce what type of energy?
sentences:
- Shawnee Trails Council was formed from the merger of the Four Rivers Council and
the Audubon Council .
- A Mercedes parked next to a parking meter on a street.
- "burning wood is used to produce heat. Heat is kinetic energy. \n burning wood\
\ is used to produce kinetic energy."
- source_sentence: As of March , more than 413,000 cases have been confirmed in more
than 190 countries with more than 107,000 recoveries .
sentences:
- As of 24 March , more than 414,000 cases of COVID-19 have been reported in more
than 190 countries and territories , resulting in more than 18,500 deaths and
more than 108,000 recoveries .
- 'Pope Francis makes first visit as head of state to Italy\''s president - YouTube
Pope Francis makes first visit as head of state to Italy\''s president Want to
watch this again later? Sign in to add this video to a playlist. Need to report
the video? Sign in to report inappropriate content. The interactive transcript
could not be loaded. Loading... Rating is available when the video has been rented.
This feature is not available right now. Please try again later. Published on
Nov 14, 2013 Pope Francis stepped out of the Vatican, several hundred feet into
the heart of Rome, to meet with Italian President Giorgio Napolitano, and the
country\''s Council of Ministers. . --------------------- Suscríbete al canal:
http://smarturl.it/RomeReports Visita nuestra web: http://www.romereports.com/
ROME REPORTS, www.romereports.com, is an independent international TV News Agency
based in Rome covering the activity of the Pope, the life of the Vatican and current
social, cultural and religious debates. Reporting on the Catholic Church requires
proximity to the source, in-depth knowledge of the Institution, and a high standard
of creativity and technical excellence. As few broadcasters have a permanent correspondent
in Rome, ROME REPORTS is geared to inform the public and meet the needs of television
broadcasting companies around the world through daily news packages, weekly newsprograms
and documentaries. ---------------------'
- German shepherds and retrievers are commonly used, but the Belgian Malinois has
proven to be one of the most outstanding working dogs used in military service.
Around 85 percent of military working dogs are purchased in Germany or the Netherlands,
where they have been breeding dogs for military purposes for hundreds of years.
In addition, the Air Force Security Forces Center, Army Veterinary Corps and the
341st Training Squadron combine efforts to raise their own dogs; nearly 15 percent
of all military working dogs are now bred here.
model-index:
- name: SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.875643593885091
name: Pearson Cosine
- type: spearman_cosine
value: 0.9063415240472948
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9077403211524888
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9055112293832712
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9077080621981075
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9061498543947556
name: Spearman Euclidean
- type: pearson_dot
value: 0.8591462310934479
name: Pearson Dot
- type: spearman_dot
value: 0.8674279304506193
name: Spearman Dot
- type: pearson_max
value: 0.9077403211524888
name: Pearson Max
- type: spearman_max
value: 0.9063415240472948
name: Spearman Max
---
# SentenceTransformer based on bobox/DeBERTa-small-ST-v1-test-step3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) on the bobox/enhanced_nli-50_k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [bobox/DeBERTa-small-ST-v1-test-step3](https://huggingface.co/bobox/DeBERTa-small-ST-v1-test-step3) <!-- at revision df9aaa75fe0c2791e5ed35ff33de1689d9a5f5ff -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- bobox/enhanced_nli-50_k
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2")
# Run inference
sentences = [
'As of March , more than 413,000 cases have been confirmed in more than 190 countries with more than 107,000 recoveries .',
'As of 24 March , more than 414,000 cases of COVID-19 have been reported in more than 190 countries and territories , resulting in more than 18,500 deaths and more than 108,000 recoveries .',
'German shepherds and retrievers are commonly used, but the Belgian Malinois has proven to be one of the most outstanding working dogs used in military service. Around 85 percent of military working dogs are purchased in Germany or the Netherlands, where they have been breeding dogs for military purposes for hundreds of years. In addition, the Air Force Security Forces Center, Army Veterinary Corps and the 341st Training Squadron combine efforts to raise their own dogs; nearly 15 percent of all military working dogs are now bred here.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8756 |
| **spearman_cosine** | **0.9063** |
| pearson_manhattan | 0.9077 |
| spearman_manhattan | 0.9055 |
| pearson_euclidean | 0.9077 |
| spearman_euclidean | 0.9061 |
| pearson_dot | 0.8591 |
| spearman_dot | 0.8674 |
| pearson_max | 0.9077 |
| spearman_max | 0.9063 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### bobox/enhanced_nli-50_k
* Dataset: bobox/enhanced_nli-50_k
* Size: 260,034 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 39.12 tokens</li><li>max: 344 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 60.17 tokens</li><li>max: 442 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Temple Meads Railway Station is in which English city?</code> | <code>Bristol Temple Meads station roof to be replaced - BBC News BBC News Bristol Temple Meads station roof to be replaced 17 October 2013 Image caption Bristol Temple Meads was designed by Isambard Kingdom Brunel Image caption It will cost Network Rail £15m to replace the station's roof Image caption A pact has been signed to redevelop the station over the next 25 years The entire roof on Bristol Temple Meads railway station is to be replaced. Network Rail says it has secured £15m to carry out maintenance of the roof and install new lighting and cables. The announcement was made as a pact was signed to "significantly transform" the station over the next 25 years. Network Rail, Bristol City Council, the West of England Local Enterprise Partnership, Homes and Communities Agency and English Heritage are supporting the plan. Each has signed the 25-year memorandum of understanding to redevelop the station. Patrick Hallgate, of Network Rail Western, said: "Our plans for Bristol will see the railway significantly transformed by the end of the decade, with more seats, better connections and more frequent services." The railway station was designed by Isambard Kingdom Brunel and opened in 1840.</code> |
| <code>Where do most of the digestion reactions occur?</code> | <code>Most of the digestion reactions occur in the small intestine.</code> |
| <code>Sacko, 22, joined Sporting from French top-flight side Bordeaux in 2014, but has so far been limited to playing for the Portuguese club's B team.<br>The former France Under-20 player joined Ligue 2 side Sochaux on loan in February and scored twice in 14 games.<br>He is Leeds' third signing of the transfer window, following the arrivals of Marcus Antonsson and Kyle Bartley.<br>Find all the latest football transfers on our dedicated page.</code> | <code>Leeds have signed Sporting Lisbon forward Hadi Sacko on a season-long loan with a view to a permanent deal.</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Evaluation Dataset
#### bobox/enhanced_nli-50_k
* Dataset: bobox/enhanced_nli-50_k
* Size: 1,506 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 31.16 tokens</li><li>max: 340 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 62.3 tokens</li><li>max: 455 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Interestingly, snakes use their forked tongues to smell.</code> | <code>Snakes use their tongue to smell things.</code> |
| <code>A voltaic cell generates an electric current through a reaction known as a(n) spontaneous redox.</code> | <code>A voltaic cell uses what type of reaction to generate an electric current</code> |
| <code>As of March 22 , there were more than 321,000 cases with over 13,600 deaths and more than 96,000 recoveries reported worldwide .</code> | <code>As of 22 March , more than 321,000 cases of COVID-19 have been reported in over 180 countries and territories , resulting in more than 13,600 deaths and 96,000 recoveries .</code> |
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 320
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.25
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 320
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {'num_cycles': 3}
- `warmup_ratio`: 0.25
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa-small-ST-v1-test-UnifiedDatasets-Ft2-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:------------------------:|
| 0.0012 | 1 | 0.3208 | - | - |
| 0.0025 | 2 | 0.1703 | - | - |
| 0.0037 | 3 | 0.3362 | - | - |
| 0.0049 | 4 | 0.3346 | - | - |
| 0.0062 | 5 | 0.2484 | - | - |
| 0.0074 | 6 | 0.2249 | - | - |
| 0.0086 | 7 | 0.2724 | - | - |
| 0.0098 | 8 | 0.251 | - | - |
| 0.0111 | 9 | 0.2413 | - | - |
| 0.0123 | 10 | 0.382 | - | - |
| 0.0135 | 11 | 0.2695 | - | - |
| 0.0148 | 12 | 0.2392 | - | - |
| 0.0160 | 13 | 0.3603 | - | - |
| 0.0172 | 14 | 0.3282 | - | - |
| 0.0185 | 15 | 0.2878 | - | - |
| 0.0197 | 16 | 0.3046 | - | - |
| 0.0209 | 17 | 0.3946 | - | - |
| 0.0221 | 18 | 0.2038 | - | - |
| 0.0234 | 19 | 0.3542 | - | - |
| 0.0246 | 20 | 0.2369 | - | - |
| 0.0258 | 21 | 0.1967 | 0.1451 | 0.9081 |
| 0.0271 | 22 | 0.2368 | - | - |
| 0.0283 | 23 | 0.263 | - | - |
| 0.0295 | 24 | 0.3595 | - | - |
| 0.0308 | 25 | 0.3073 | - | - |
| 0.0320 | 26 | 0.2232 | - | - |
| 0.0332 | 27 | 0.1822 | - | - |
| 0.0344 | 28 | 0.251 | - | - |
| 0.0357 | 29 | 0.2677 | - | - |
| 0.0369 | 30 | 0.3252 | - | - |
| 0.0381 | 31 | 0.2058 | - | - |
| 0.0394 | 32 | 0.3083 | - | - |
| 0.0406 | 33 | 0.2109 | - | - |
| 0.0418 | 34 | 0.2751 | - | - |
| 0.0431 | 35 | 0.2269 | - | - |
| 0.0443 | 36 | 0.2333 | - | - |
| 0.0455 | 37 | 0.2747 | - | - |
| 0.0467 | 38 | 0.1285 | - | - |
| 0.0480 | 39 | 0.3659 | - | - |
| 0.0492 | 40 | 0.3991 | - | - |
| 0.0504 | 41 | 0.2647 | - | - |
| 0.0517 | 42 | 0.3627 | 0.1373 | 0.9084 |
| 0.0529 | 43 | 0.2026 | - | - |
| 0.0541 | 44 | 0.1923 | - | - |
| 0.0554 | 45 | 0.2369 | - | - |
| 0.0566 | 46 | 0.2268 | - | - |
| 0.0578 | 47 | 0.2975 | - | - |
| 0.0590 | 48 | 0.1922 | - | - |
| 0.0603 | 49 | 0.1906 | - | - |
| 0.0615 | 50 | 0.2379 | - | - |
| 0.0627 | 51 | 0.3796 | - | - |
| 0.0640 | 52 | 0.1821 | - | - |
| 0.0652 | 53 | 0.1257 | - | - |
| 0.0664 | 54 | 0.2368 | - | - |
| 0.0677 | 55 | 0.294 | - | - |
| 0.0689 | 56 | 0.2594 | - | - |
| 0.0701 | 57 | 0.2972 | - | - |
| 0.0713 | 58 | 0.2297 | - | - |
| 0.0726 | 59 | 0.1487 | - | - |
| 0.0738 | 60 | 0.182 | - | - |
| 0.0750 | 61 | 0.2516 | - | - |
| 0.0763 | 62 | 0.2809 | - | - |
| 0.0775 | 63 | 0.1371 | 0.1308 | 0.9068 |
| 0.0787 | 64 | 0.2149 | - | - |
| 0.0800 | 65 | 0.1806 | - | - |
| 0.0812 | 66 | 0.1458 | - | - |
| 0.0824 | 67 | 0.249 | - | - |
| 0.0836 | 68 | 0.2787 | - | - |
| 0.0849 | 69 | 0.288 | - | - |
| 0.0861 | 70 | 0.1461 | - | - |
| 0.0873 | 71 | 0.2304 | - | - |
| 0.0886 | 72 | 0.3505 | - | - |
| 0.0898 | 73 | 0.2227 | - | - |
| 0.0910 | 74 | 0.1746 | - | - |
| 0.0923 | 75 | 0.1484 | - | - |
| 0.0935 | 76 | 0.1346 | - | - |
| 0.0947 | 77 | 0.2112 | - | - |
| 0.0959 | 78 | 0.3138 | - | - |
| 0.0972 | 79 | 0.2675 | - | - |
| 0.0984 | 80 | 0.2849 | - | - |
| 0.0996 | 81 | 0.1719 | - | - |
| 0.1009 | 82 | 0.2749 | - | - |
| 0.1021 | 83 | 0.3097 | - | - |
| 0.1033 | 84 | 0.2068 | 0.1260 | 0.9045 |
| 0.1046 | 85 | 0.22 | - | - |
| 0.1058 | 86 | 0.2977 | - | - |
| 0.1070 | 87 | 0.209 | - | - |
| 0.1082 | 88 | 0.2215 | - | - |
| 0.1095 | 89 | 0.1948 | - | - |
| 0.1107 | 90 | 0.2084 | - | - |
| 0.1119 | 91 | 0.1823 | - | - |
| 0.1132 | 92 | 0.255 | - | - |
| 0.1144 | 93 | 0.2675 | - | - |
| 0.1156 | 94 | 0.18 | - | - |
| 0.1169 | 95 | 0.2891 | - | - |
| 0.1181 | 96 | 0.253 | - | - |
| 0.1193 | 97 | 0.3481 | - | - |
| 0.1205 | 98 | 0.1688 | - | - |
| 0.1218 | 99 | 0.1808 | - | - |
| 0.1230 | 100 | 0.2821 | - | - |
| 0.1242 | 101 | 0.1856 | - | - |
| 0.1255 | 102 | 0.1441 | - | - |
| 0.1267 | 103 | 0.226 | - | - |
| 0.1279 | 104 | 0.1662 | - | - |
| 0.1292 | 105 | 0.2043 | 0.1187 | 0.9051 |
| 0.1304 | 106 | 0.3907 | - | - |
| 0.1316 | 107 | 0.1332 | - | - |
| 0.1328 | 108 | 0.2243 | - | - |
| 0.1341 | 109 | 0.162 | - | - |
| 0.1353 | 110 | 0.1481 | - | - |
| 0.1365 | 111 | 0.2163 | - | - |
| 0.1378 | 112 | 0.24 | - | - |
| 0.1390 | 113 | 0.1406 | - | - |
| 0.1402 | 114 | 0.1522 | - | - |
| 0.1415 | 115 | 0.2593 | - | - |
| 0.1427 | 116 | 0.2426 | - | - |
| 0.1439 | 117 | 0.1781 | - | - |
| 0.1451 | 118 | 0.264 | - | - |
| 0.1464 | 119 | 0.1944 | - | - |
| 0.1476 | 120 | 0.1341 | - | - |
| 0.1488 | 121 | 0.155 | - | - |
| 0.1501 | 122 | 0.2052 | - | - |
| 0.1513 | 123 | 0.2023 | - | - |
| 0.1525 | 124 | 0.1519 | - | - |
| 0.1538 | 125 | 0.2118 | - | - |
| 0.1550 | 126 | 0.2489 | 0.1147 | 0.9058 |
| 0.1562 | 127 | 0.1988 | - | - |
| 0.1574 | 128 | 0.1541 | - | - |
| 0.1587 | 129 | 0.1819 | - | - |
| 0.1599 | 130 | 0.1582 | - | - |
| 0.1611 | 131 | 0.2866 | - | - |
| 0.1624 | 132 | 0.2766 | - | - |
| 0.1636 | 133 | 0.1299 | - | - |
| 0.1648 | 134 | 0.2558 | - | - |
| 0.1661 | 135 | 0.1687 | - | - |
| 0.1673 | 136 | 0.173 | - | - |
| 0.1685 | 137 | 0.2276 | - | - |
| 0.1697 | 138 | 0.2174 | - | - |
| 0.1710 | 139 | 0.2666 | - | - |
| 0.1722 | 140 | 0.1524 | - | - |
| 0.1734 | 141 | 0.1179 | - | - |
| 0.1747 | 142 | 0.2475 | - | - |
| 0.1759 | 143 | 0.2662 | - | - |
| 0.1771 | 144 | 0.1596 | - | - |
| 0.1784 | 145 | 0.2331 | - | - |
| 0.1796 | 146 | 0.2905 | - | - |
| 0.1808 | 147 | 0.1342 | 0.1088 | 0.9051 |
| 0.1820 | 148 | 0.0839 | - | - |
| 0.1833 | 149 | 0.2055 | - | - |
| 0.1845 | 150 | 0.2196 | - | - |
| 0.1857 | 151 | 0.2283 | - | - |
| 0.1870 | 152 | 0.2105 | - | - |
| 0.1882 | 153 | 0.1534 | - | - |
| 0.1894 | 154 | 0.1954 | - | - |
| 0.1907 | 155 | 0.1332 | - | - |
| 0.1919 | 156 | 0.19 | - | - |
| 0.1931 | 157 | 0.1878 | - | - |
| 0.1943 | 158 | 0.1518 | - | - |
| 0.1956 | 159 | 0.1906 | - | - |
| 0.1968 | 160 | 0.155 | - | - |
| 0.1980 | 161 | 0.1519 | - | - |
| 0.1993 | 162 | 0.1726 | - | - |
| 0.2005 | 163 | 0.1618 | - | - |
| 0.2017 | 164 | 0.2767 | - | - |
| 0.2030 | 165 | 0.1996 | - | - |
| 0.2042 | 166 | 0.1907 | - | - |
| 0.2054 | 167 | 0.1928 | - | - |
| 0.2066 | 168 | 0.1507 | 0.1082 | 0.9045 |
| 0.2079 | 169 | 0.1637 | - | - |
| 0.2091 | 170 | 0.1687 | - | - |
| 0.2103 | 171 | 0.2181 | - | - |
| 0.2116 | 172 | 0.1496 | - | - |
| 0.2128 | 173 | 0.1749 | - | - |
| 0.2140 | 174 | 0.2374 | - | - |
| 0.2153 | 175 | 0.2122 | - | - |
| 0.2165 | 176 | 0.1617 | - | - |
| 0.2177 | 177 | 0.168 | - | - |
| 0.2189 | 178 | 0.263 | - | - |
| 0.2202 | 179 | 0.1328 | - | - |
| 0.2214 | 180 | 0.3157 | - | - |
| 0.2226 | 181 | 0.2164 | - | - |
| 0.2239 | 182 | 0.1255 | - | - |
| 0.2251 | 183 | 0.2863 | - | - |
| 0.2263 | 184 | 0.155 | - | - |
| 0.2276 | 185 | 0.1271 | - | - |
| 0.2288 | 186 | 0.216 | - | - |
| 0.2300 | 187 | 0.205 | - | - |
| 0.2312 | 188 | 0.1575 | - | - |
| 0.2325 | 189 | 0.1939 | 0.1057 | 0.9046 |
| 0.2337 | 190 | 0.2209 | - | - |
| 0.2349 | 191 | 0.153 | - | - |
| 0.2362 | 192 | 0.2187 | - | - |
| 0.2374 | 193 | 0.1593 | - | - |
| 0.2386 | 194 | 0.173 | - | - |
| 0.2399 | 195 | 0.2377 | - | - |
| 0.2411 | 196 | 0.2281 | - | - |
| 0.2423 | 197 | 0.2651 | - | - |
| 0.2435 | 198 | 0.118 | - | - |
| 0.2448 | 199 | 0.1728 | - | - |
| 0.2460 | 200 | 0.2299 | - | - |
| 0.2472 | 201 | 0.2342 | - | - |
| 0.2485 | 202 | 0.2413 | - | - |
| 0.2497 | 203 | 0.168 | - | - |
| 0.2509 | 204 | 0.1474 | - | - |
| 0.2522 | 205 | 0.1102 | - | - |
| 0.2534 | 206 | 0.2326 | - | - |
| 0.2546 | 207 | 0.1787 | - | - |
| 0.2558 | 208 | 0.1423 | - | - |
| 0.2571 | 209 | 0.2069 | - | - |
| 0.2583 | 210 | 0.136 | 0.1040 | 0.9056 |
| 0.2595 | 211 | 0.2407 | - | - |
| 0.2608 | 212 | 0.212 | - | - |
| 0.2620 | 213 | 0.1361 | - | - |
| 0.2632 | 214 | 0.2356 | - | - |
| 0.2645 | 215 | 0.1059 | - | - |
| 0.2657 | 216 | 0.2501 | - | - |
| 0.2669 | 217 | 0.1817 | - | - |
| 0.2681 | 218 | 0.2022 | - | - |
| 0.2694 | 219 | 0.2235 | - | - |
| 0.2706 | 220 | 0.2437 | - | - |
| 0.2718 | 221 | 0.1859 | - | - |
| 0.2731 | 222 | 0.2167 | - | - |
| 0.2743 | 223 | 0.1495 | - | - |
| 0.2755 | 224 | 0.2876 | - | - |
| 0.2768 | 225 | 0.1842 | - | - |
| 0.2780 | 226 | 0.144 | - | - |
| 0.2792 | 227 | 0.1571 | - | - |
| 0.2804 | 228 | 0.209 | - | - |
| 0.2817 | 229 | 0.2075 | - | - |
| 0.2829 | 230 | 0.1722 | - | - |
| 0.2841 | 231 | 0.1464 | 0.1039 | 0.9087 |
| 0.2854 | 232 | 0.2675 | - | - |
| 0.2866 | 233 | 0.2585 | - | - |
| 0.2878 | 234 | 0.134 | - | - |
| 0.2891 | 235 | 0.1765 | - | - |
| 0.2903 | 236 | 0.1826 | - | - |
| 0.2915 | 237 | 0.222 | - | - |
| 0.2927 | 238 | 0.134 | - | - |
| 0.2940 | 239 | 0.1902 | - | - |
| 0.2952 | 240 | 0.2461 | - | - |
| 0.2964 | 241 | 0.3094 | - | - |
| 0.2977 | 242 | 0.2252 | - | - |
| 0.2989 | 243 | 0.2466 | - | - |
| 0.3001 | 244 | 0.139 | - | - |
| 0.3014 | 245 | 0.154 | - | - |
| 0.3026 | 246 | 0.1979 | - | - |
| 0.3038 | 247 | 0.1121 | - | - |
| 0.3050 | 248 | 0.1361 | - | - |
| 0.3063 | 249 | 0.2492 | - | - |
| 0.3075 | 250 | 0.1903 | - | - |
| 0.3087 | 251 | 0.2333 | - | - |
| 0.3100 | 252 | 0.1805 | 0.1030 | 0.9099 |
| 0.3112 | 253 | 0.1929 | - | - |
| 0.3124 | 254 | 0.1424 | - | - |
| 0.3137 | 255 | 0.2318 | - | - |
| 0.3149 | 256 | 0.1524 | - | - |
| 0.3161 | 257 | 0.2195 | - | - |
| 0.3173 | 258 | 0.1338 | - | - |
| 0.3186 | 259 | 0.2543 | - | - |
| 0.3198 | 260 | 0.202 | - | - |
| 0.3210 | 261 | 0.1489 | - | - |
| 0.3223 | 262 | 0.1937 | - | - |
| 0.3235 | 263 | 0.2334 | - | - |
| 0.3247 | 264 | 0.1942 | - | - |
| 0.3260 | 265 | 0.2013 | - | - |
| 0.3272 | 266 | 0.2954 | - | - |
| 0.3284 | 267 | 0.188 | - | - |
| 0.3296 | 268 | 0.1688 | - | - |
| 0.3309 | 269 | 0.1415 | - | - |
| 0.3321 | 270 | 0.2249 | - | - |
| 0.3333 | 271 | 0.2606 | - | - |
| 0.3346 | 272 | 0.2559 | - | - |
| 0.3358 | 273 | 0.2673 | 0.1039 | 0.9078 |
| 0.3370 | 274 | 0.1618 | - | - |
| 0.3383 | 275 | 0.2602 | - | - |
| 0.3395 | 276 | 0.2339 | - | - |
| 0.3407 | 277 | 0.1843 | - | - |
| 0.3419 | 278 | 0.133 | - | - |
| 0.3432 | 279 | 0.2345 | - | - |
| 0.3444 | 280 | 0.2808 | - | - |
| 0.3456 | 281 | 0.1044 | - | - |
| 0.3469 | 282 | 0.1622 | - | - |
| 0.3481 | 283 | 0.1303 | - | - |
| 0.3493 | 284 | 0.1453 | - | - |
| 0.3506 | 285 | 0.237 | - | - |
| 0.3518 | 286 | 0.1726 | - | - |
| 0.3530 | 287 | 0.2195 | - | - |
| 0.3542 | 288 | 0.3016 | - | - |
| 0.3555 | 289 | 0.1626 | - | - |
| 0.3567 | 290 | 0.1902 | - | - |
| 0.3579 | 291 | 0.1387 | - | - |
| 0.3592 | 292 | 0.1047 | - | - |
| 0.3604 | 293 | 0.1954 | - | - |
| 0.3616 | 294 | 0.2089 | 0.1029 | 0.9083 |
| 0.3629 | 295 | 0.1485 | - | - |
| 0.3641 | 296 | 0.1724 | - | - |
| 0.3653 | 297 | 0.2017 | - | - |
| 0.3665 | 298 | 0.1591 | - | - |
| 0.3678 | 299 | 0.2396 | - | - |
| 0.3690 | 300 | 0.1395 | - | - |
| 0.3702 | 301 | 0.1806 | - | - |
| 0.3715 | 302 | 0.1882 | - | - |
| 0.3727 | 303 | 0.1188 | - | - |
| 0.3739 | 304 | 0.1564 | - | - |
| 0.3752 | 305 | 0.313 | - | - |
| 0.3764 | 306 | 0.1455 | - | - |
| 0.3776 | 307 | 0.1535 | - | - |
| 0.3788 | 308 | 0.099 | - | - |
| 0.3801 | 309 | 0.1733 | - | - |
| 0.3813 | 310 | 0.1891 | - | - |
| 0.3825 | 311 | 0.2128 | - | - |
| 0.3838 | 312 | 0.2042 | - | - |
| 0.3850 | 313 | 0.203 | - | - |
| 0.3862 | 314 | 0.2249 | - | - |
| 0.3875 | 315 | 0.1597 | 0.1014 | 0.9074 |
| 0.3887 | 316 | 0.1358 | - | - |
| 0.3899 | 317 | 0.207 | - | - |
| 0.3911 | 318 | 0.193 | - | - |
| 0.3924 | 319 | 0.1141 | - | - |
| 0.3936 | 320 | 0.2835 | - | - |
| 0.3948 | 321 | 0.2589 | - | - |
| 0.3961 | 322 | 0.088 | - | - |
| 0.3973 | 323 | 0.1675 | - | - |
| 0.3985 | 324 | 0.1525 | - | - |
| 0.3998 | 325 | 0.1401 | - | - |
| 0.4010 | 326 | 0.2109 | - | - |
| 0.4022 | 327 | 0.1382 | - | - |
| 0.4034 | 328 | 0.1724 | - | - |
| 0.4047 | 329 | 0.1668 | - | - |
| 0.4059 | 330 | 0.1606 | - | - |
| 0.4071 | 331 | 0.2102 | - | - |
| 0.4084 | 332 | 0.1737 | - | - |
| 0.4096 | 333 | 0.1641 | - | - |
| 0.4108 | 334 | 0.1984 | - | - |
| 0.4121 | 335 | 0.1395 | - | - |
| 0.4133 | 336 | 0.1236 | 0.1008 | 0.9066 |
| 0.4145 | 337 | 0.1405 | - | - |
| 0.4157 | 338 | 0.1461 | - | - |
| 0.4170 | 339 | 0.1151 | - | - |
| 0.4182 | 340 | 0.1282 | - | - |
| 0.4194 | 341 | 0.2155 | - | - |
| 0.4207 | 342 | 0.1344 | - | - |
| 0.4219 | 343 | 0.1854 | - | - |
| 0.4231 | 344 | 0.1766 | - | - |
| 0.4244 | 345 | 0.122 | - | - |
| 0.4256 | 346 | 0.142 | - | - |
| 0.4268 | 347 | 0.1434 | - | - |
| 0.4280 | 348 | 0.1687 | - | - |
| 0.4293 | 349 | 0.1751 | - | - |
| 0.4305 | 350 | 0.1253 | - | - |
| 0.4317 | 351 | 0.1387 | - | - |
| 0.4330 | 352 | 0.181 | - | - |
| 0.4342 | 353 | 0.101 | - | - |
| 0.4354 | 354 | 0.1552 | - | - |
| 0.4367 | 355 | 0.2676 | - | - |
| 0.4379 | 356 | 0.1638 | - | - |
| 0.4391 | 357 | 0.19 | 0.1008 | 0.9072 |
| 0.4403 | 358 | 0.1152 | - | - |
| 0.4416 | 359 | 0.1639 | - | - |
| 0.4428 | 360 | 0.1624 | - | - |
| 0.4440 | 361 | 0.203 | - | - |
| 0.4453 | 362 | 0.1856 | - | - |
| 0.4465 | 363 | 0.1978 | - | - |
| 0.4477 | 364 | 0.1457 | - | - |
| 0.4490 | 365 | 0.176 | - | - |
| 0.4502 | 366 | 0.1742 | - | - |
| 0.4514 | 367 | 0.1599 | - | - |
| 0.4526 | 368 | 0.2085 | - | - |
| 0.4539 | 369 | 0.2255 | - | - |
| 0.4551 | 370 | 0.1941 | - | - |
| 0.4563 | 371 | 0.0769 | - | - |
| 0.4576 | 372 | 0.2031 | - | - |
| 0.4588 | 373 | 0.2151 | - | - |
| 0.4600 | 374 | 0.2115 | - | - |
| 0.4613 | 375 | 0.1241 | - | - |
| 0.4625 | 376 | 0.1693 | - | - |
| 0.4637 | 377 | 0.2086 | - | - |
| 0.4649 | 378 | 0.1661 | 0.1004 | 0.9074 |
| 0.4662 | 379 | 0.1508 | - | - |
| 0.4674 | 380 | 0.1802 | - | - |
| 0.4686 | 381 | 0.1005 | - | - |
| 0.4699 | 382 | 0.1948 | - | - |
| 0.4711 | 383 | 0.1618 | - | - |
| 0.4723 | 384 | 0.216 | - | - |
| 0.4736 | 385 | 0.132 | - | - |
| 0.4748 | 386 | 0.2461 | - | - |
| 0.4760 | 387 | 0.1825 | - | - |
| 0.4772 | 388 | 0.1912 | - | - |
| 0.4785 | 389 | 0.1706 | - | - |
| 0.4797 | 390 | 0.2599 | - | - |
| 0.4809 | 391 | 0.1837 | - | - |
| 0.4822 | 392 | 0.23 | - | - |
| 0.4834 | 393 | 0.1523 | - | - |
| 0.4846 | 394 | 0.1105 | - | - |
| 0.4859 | 395 | 0.1478 | - | - |
| 0.4871 | 396 | 0.2184 | - | - |
| 0.4883 | 397 | 0.1977 | - | - |
| 0.4895 | 398 | 0.1607 | - | - |
| 0.4908 | 399 | 0.2183 | 0.1002 | 0.9077 |
| 0.4920 | 400 | 0.1155 | - | - |
| 0.4932 | 401 | 0.2395 | - | - |
| 0.4945 | 402 | 0.1194 | - | - |
| 0.4957 | 403 | 0.1567 | - | - |
| 0.4969 | 404 | 0.1037 | - | - |
| 0.4982 | 405 | 0.2713 | - | - |
| 0.4994 | 406 | 0.1742 | - | - |
| 0.5006 | 407 | 0.221 | - | - |
| 0.5018 | 408 | 0.1412 | - | - |
| 0.5031 | 409 | 0.1482 | - | - |
| 0.5043 | 410 | 0.1347 | - | - |
| 0.5055 | 411 | 0.2345 | - | - |
| 0.5068 | 412 | 0.1231 | - | - |
| 0.5080 | 413 | 0.1418 | - | - |
| 0.5092 | 414 | 0.152 | - | - |
| 0.5105 | 415 | 0.1878 | - | - |
| 0.5117 | 416 | 0.1683 | - | - |
| 0.5129 | 417 | 0.1501 | - | - |
| 0.5141 | 418 | 0.2589 | - | - |
| 0.5154 | 419 | 0.1924 | - | - |
| 0.5166 | 420 | 0.1166 | 0.0979 | 0.9078 |
| 0.5178 | 421 | 0.1509 | - | - |
| 0.5191 | 422 | 0.1457 | - | - |
| 0.5203 | 423 | 0.2244 | - | - |
| 0.5215 | 424 | 0.1837 | - | - |
| 0.5228 | 425 | 0.2649 | - | - |
| 0.5240 | 426 | 0.1295 | - | - |
| 0.5252 | 427 | 0.1776 | - | - |
| 0.5264 | 428 | 0.1949 | - | - |
| 0.5277 | 429 | 0.1262 | - | - |
| 0.5289 | 430 | 0.1502 | - | - |
| 0.5301 | 431 | 0.1927 | - | - |
| 0.5314 | 432 | 0.2161 | - | - |
| 0.5326 | 433 | 0.2082 | - | - |
| 0.5338 | 434 | 0.2171 | - | - |
| 0.5351 | 435 | 0.209 | - | - |
| 0.5363 | 436 | 0.1841 | - | - |
| 0.5375 | 437 | 0.1522 | - | - |
| 0.5387 | 438 | 0.1644 | - | - |
| 0.5400 | 439 | 0.1784 | - | - |
| 0.5412 | 440 | 0.2041 | - | - |
| 0.5424 | 441 | 0.1564 | 0.0968 | 0.9058 |
| 0.5437 | 442 | 0.2151 | - | - |
| 0.5449 | 443 | 0.1797 | - | - |
| 0.5461 | 444 | 0.1652 | - | - |
| 0.5474 | 445 | 0.1561 | - | - |
| 0.5486 | 446 | 0.1063 | - | - |
| 0.5498 | 447 | 0.1584 | - | - |
| 0.5510 | 448 | 0.2396 | - | - |
| 0.5523 | 449 | 0.1952 | - | - |
| 0.5535 | 450 | 0.1598 | - | - |
| 0.5547 | 451 | 0.2093 | - | - |
| 0.5560 | 452 | 0.1585 | - | - |
| 0.5572 | 453 | 0.2311 | - | - |
| 0.5584 | 454 | 0.1048 | - | - |
| 0.5597 | 455 | 0.1571 | - | - |
| 0.5609 | 456 | 0.1915 | - | - |
| 0.5621 | 457 | 0.1625 | - | - |
| 0.5633 | 458 | 0.1613 | - | - |
| 0.5646 | 459 | 0.1845 | - | - |
| 0.5658 | 460 | 0.2134 | - | - |
| 0.5670 | 461 | 0.2059 | - | - |
| 0.5683 | 462 | 0.1974 | 0.0947 | 0.9067 |
| 0.5695 | 463 | 0.1624 | - | - |
| 0.5707 | 464 | 0.2005 | - | - |
| 0.5720 | 465 | 0.1407 | - | - |
| 0.5732 | 466 | 0.1175 | - | - |
| 0.5744 | 467 | 0.1888 | - | - |
| 0.5756 | 468 | 0.1423 | - | - |
| 0.5769 | 469 | 0.1195 | - | - |
| 0.5781 | 470 | 0.1525 | - | - |
| 0.5793 | 471 | 0.2155 | - | - |
| 0.5806 | 472 | 0.2048 | - | - |
| 0.5818 | 473 | 0.2386 | - | - |
| 0.5830 | 474 | 0.162 | - | - |
| 0.5843 | 475 | 0.1735 | - | - |
| 0.5855 | 476 | 0.2067 | - | - |
| 0.5867 | 477 | 0.1395 | - | - |
| 0.5879 | 478 | 0.1482 | - | - |
| 0.5892 | 479 | 0.2399 | - | - |
| 0.5904 | 480 | 0.1849 | - | - |
| 0.5916 | 481 | 0.139 | - | - |
| 0.5929 | 482 | 0.2089 | - | - |
| 0.5941 | 483 | 0.2066 | 0.0934 | 0.9072 |
| 0.5953 | 484 | 0.2293 | - | - |
| 0.5966 | 485 | 0.1919 | - | - |
| 0.5978 | 486 | 0.1168 | - | - |
| 0.5990 | 487 | 0.2057 | - | - |
| 0.6002 | 488 | 0.1866 | - | - |
| 0.6015 | 489 | 0.2277 | - | - |
| 0.6027 | 490 | 0.1527 | - | - |
| 0.6039 | 491 | 0.275 | - | - |
| 0.6052 | 492 | 0.1212 | - | - |
| 0.6064 | 493 | 0.1384 | - | - |
| 0.6076 | 494 | 0.1611 | - | - |
| 0.6089 | 495 | 0.145 | - | - |
| 0.6101 | 496 | 0.1996 | - | - |
| 0.6113 | 497 | 0.3 | - | - |
| 0.6125 | 498 | 0.1117 | - | - |
| 0.6138 | 499 | 0.1905 | - | - |
| 0.6150 | 500 | 0.2221 | - | - |
| 0.6162 | 501 | 0.1749 | - | - |
| 0.6175 | 502 | 0.1533 | - | - |
| 0.6187 | 503 | 0.2268 | - | - |
| 0.6199 | 504 | 0.1879 | 0.0936 | 0.9066 |
| 0.6212 | 505 | 0.2956 | - | - |
| 0.6224 | 506 | 0.1566 | - | - |
| 0.6236 | 507 | 0.1612 | - | - |
| 0.6248 | 508 | 0.2312 | - | - |
| 0.6261 | 509 | 0.181 | - | - |
| 0.6273 | 510 | 0.235 | - | - |
| 0.6285 | 511 | 0.1376 | - | - |
| 0.6298 | 512 | 0.1066 | - | - |
| 0.6310 | 513 | 0.2235 | - | - |
| 0.6322 | 514 | 0.2549 | - | - |
| 0.6335 | 515 | 0.2676 | - | - |
| 0.6347 | 516 | 0.1652 | - | - |
| 0.6359 | 517 | 0.1573 | - | - |
| 0.6371 | 518 | 0.2106 | - | - |
| 0.6384 | 519 | 0.151 | - | - |
| 0.6396 | 520 | 0.1491 | - | - |
| 0.6408 | 521 | 0.2612 | - | - |
| 0.6421 | 522 | 0.1287 | - | - |
| 0.6433 | 523 | 0.2084 | - | - |
| 0.6445 | 524 | 0.1545 | - | - |
| 0.6458 | 525 | 0.1946 | 0.0931 | 0.9061 |
| 0.6470 | 526 | 0.1684 | - | - |
| 0.6482 | 527 | 0.1974 | - | - |
| 0.6494 | 528 | 0.2448 | - | - |
| 0.6507 | 529 | 0.2255 | - | - |
| 0.6519 | 530 | 0.2157 | - | - |
| 0.6531 | 531 | 0.1948 | - | - |
| 0.6544 | 532 | 0.1418 | - | - |
| 0.6556 | 533 | 0.1683 | - | - |
| 0.6568 | 534 | 0.193 | - | - |
| 0.6581 | 535 | 0.2341 | - | - |
| 0.6593 | 536 | 0.131 | - | - |
| 0.6605 | 537 | 0.1733 | - | - |
| 0.6617 | 538 | 0.1489 | - | - |
| 0.6630 | 539 | 0.1918 | - | - |
| 0.6642 | 540 | 0.1953 | - | - |
| 0.6654 | 541 | 0.1421 | - | - |
| 0.6667 | 542 | 0.2214 | - | - |
| 0.6679 | 543 | 0.2152 | - | - |
| 0.6691 | 544 | 0.209 | - | - |
| 0.6704 | 545 | 0.1735 | - | - |
| 0.6716 | 546 | 0.2048 | 0.0918 | 0.9060 |
| 0.6728 | 547 | 0.1721 | - | - |
| 0.6740 | 548 | 0.1838 | - | - |
| 0.6753 | 549 | 0.1614 | - | - |
| 0.6765 | 550 | 0.1999 | - | - |
| 0.6777 | 551 | 0.0984 | - | - |
| 0.6790 | 552 | 0.1351 | - | - |
| 0.6802 | 553 | 0.1886 | - | - |
| 0.6814 | 554 | 0.1148 | - | - |
| 0.6827 | 555 | 0.1766 | - | - |
| 0.6839 | 556 | 0.19 | - | - |
| 0.6851 | 557 | 0.2082 | - | - |
| 0.6863 | 558 | 0.222 | - | - |
| 0.6876 | 559 | 0.2032 | - | - |
| 0.6888 | 560 | 0.1854 | - | - |
| 0.6900 | 561 | 0.1473 | - | - |
| 0.6913 | 562 | 0.2003 | - | - |
| 0.6925 | 563 | 0.1223 | - | - |
| 0.6937 | 564 | 0.2319 | - | - |
| 0.6950 | 565 | 0.0761 | - | - |
| 0.6962 | 566 | 0.2835 | - | - |
| 0.6974 | 567 | 0.2331 | 0.0920 | 0.9061 |
| 0.6986 | 568 | 0.1698 | - | - |
| 0.6999 | 569 | 0.203 | - | - |
| 0.7011 | 570 | 0.2344 | - | - |
| 0.7023 | 571 | 0.1823 | - | - |
| 0.7036 | 572 | 0.2043 | - | - |
| 0.7048 | 573 | 0.1881 | - | - |
| 0.7060 | 574 | 0.1599 | - | - |
| 0.7073 | 575 | 0.0829 | - | - |
| 0.7085 | 576 | 0.1816 | - | - |
| 0.7097 | 577 | 0.1801 | - | - |
| 0.7109 | 578 | 0.1707 | - | - |
| 0.7122 | 579 | 0.2306 | - | - |
| 0.7134 | 580 | 0.1503 | - | - |
| 0.7146 | 581 | 0.1779 | - | - |
| 0.7159 | 582 | 0.1422 | - | - |
| 0.7171 | 583 | 0.1358 | - | - |
| 0.7183 | 584 | 0.0978 | - | - |
| 0.7196 | 585 | 0.1713 | - | - |
| 0.7208 | 586 | 0.1771 | - | - |
| 0.7220 | 587 | 0.1241 | - | - |
| 0.7232 | 588 | 0.1267 | 0.0918 | 0.9064 |
| 0.7245 | 589 | 0.1126 | - | - |
| 0.7257 | 590 | 0.0858 | - | - |
| 0.7269 | 591 | 0.1335 | - | - |
| 0.7282 | 592 | 0.1958 | - | - |
| 0.7294 | 593 | 0.1448 | - | - |
| 0.7306 | 594 | 0.2679 | - | - |
| 0.7319 | 595 | 0.153 | - | - |
| 0.7331 | 596 | 0.1523 | - | - |
| 0.7343 | 597 | 0.1988 | - | - |
| 0.7355 | 598 | 0.157 | - | - |
| 0.7368 | 599 | 0.146 | - | - |
| 0.7380 | 600 | 0.2043 | - | - |
| 0.7392 | 601 | 0.1508 | - | - |
| 0.7405 | 602 | 0.1946 | - | - |
| 0.7417 | 603 | 0.1481 | - | - |
| 0.7429 | 604 | 0.0995 | - | - |
| 0.7442 | 605 | 0.149 | - | - |
| 0.7454 | 606 | 0.1686 | - | - |
| 0.7466 | 607 | 0.1555 | - | - |
| 0.7478 | 608 | 0.1662 | - | - |
| 0.7491 | 609 | 0.1217 | 0.0917 | 0.9064 |
| 0.7503 | 610 | 0.0748 | - | - |
| 0.7515 | 611 | 0.1723 | - | - |
| 0.7528 | 612 | 0.2354 | - | - |
| 0.7540 | 613 | 0.1315 | - | - |
| 0.7552 | 614 | 0.2913 | - | - |
| 0.7565 | 615 | 0.0991 | - | - |
| 0.7577 | 616 | 0.1052 | - | - |
| 0.7589 | 617 | 0.1496 | - | - |
| 0.7601 | 618 | 0.1399 | - | - |
| 0.7614 | 619 | 0.1329 | - | - |
| 0.7626 | 620 | 0.2287 | - | - |
| 0.7638 | 621 | 0.1085 | - | - |
| 0.7651 | 622 | 0.1864 | - | - |
| 0.7663 | 623 | 0.1577 | - | - |
| 0.7675 | 624 | 0.143 | - | - |
| 0.7688 | 625 | 0.1886 | - | - |
| 0.7700 | 626 | 0.1683 | - | - |
| 0.7712 | 627 | 0.212 | - | - |
| 0.7724 | 628 | 0.1643 | - | - |
| 0.7737 | 629 | 0.1632 | - | - |
| 0.7749 | 630 | 0.1384 | 0.0925 | 0.9054 |
| 0.7761 | 631 | 0.2133 | - | - |
| 0.7774 | 632 | 0.1732 | - | - |
| 0.7786 | 633 | 0.1218 | - | - |
| 0.7798 | 634 | 0.1581 | - | - |
| 0.7811 | 635 | 0.1337 | - | - |
| 0.7823 | 636 | 0.1859 | - | - |
| 0.7835 | 637 | 0.1616 | - | - |
| 0.7847 | 638 | 0.1799 | - | - |
| 0.7860 | 639 | 0.1193 | - | - |
| 0.7872 | 640 | 0.1471 | - | - |
| 0.7884 | 641 | 0.1235 | - | - |
| 0.7897 | 642 | 0.1221 | - | - |
| 0.7909 | 643 | 0.1379 | - | - |
| 0.7921 | 644 | 0.238 | - | - |
| 0.7934 | 645 | 0.1671 | - | - |
| 0.7946 | 646 | 0.1652 | - | - |
| 0.7958 | 647 | 0.1828 | - | - |
| 0.7970 | 648 | 0.2207 | - | - |
| 0.7983 | 649 | 0.2109 | - | - |
| 0.7995 | 650 | 0.1105 | - | - |
| 0.8007 | 651 | 0.129 | 0.0933 | 0.9069 |
| 0.8020 | 652 | 0.1633 | - | - |
| 0.8032 | 653 | 0.201 | - | - |
| 0.8044 | 654 | 0.1041 | - | - |
| 0.8057 | 655 | 0.1838 | - | - |
| 0.8069 | 656 | 0.3044 | - | - |
| 0.8081 | 657 | 0.1736 | - | - |
| 0.8093 | 658 | 0.1909 | - | - |
| 0.8106 | 659 | 0.1413 | - | - |
| 0.8118 | 660 | 0.1138 | - | - |
| 0.8130 | 661 | 0.1163 | - | - |
| 0.8143 | 662 | 0.1725 | - | - |
| 0.8155 | 663 | 0.2248 | - | - |
| 0.8167 | 664 | 0.1019 | - | - |
| 0.8180 | 665 | 0.1138 | - | - |
| 0.8192 | 666 | 0.1652 | - | - |
| 0.8204 | 667 | 0.1361 | - | - |
| 0.8216 | 668 | 0.1769 | - | - |
| 0.8229 | 669 | 0.1241 | - | - |
| 0.8241 | 670 | 0.1683 | - | - |
| 0.8253 | 671 | 0.1315 | - | - |
| 0.8266 | 672 | 0.1046 | 0.0940 | 0.9055 |
| 0.8278 | 673 | 0.1984 | - | - |
| 0.8290 | 674 | 0.1766 | - | - |
| 0.8303 | 675 | 0.1245 | - | - |
| 0.8315 | 676 | 0.1953 | - | - |
| 0.8327 | 677 | 0.1506 | - | - |
| 0.8339 | 678 | 0.1145 | - | - |
| 0.8352 | 679 | 0.1366 | - | - |
| 0.8364 | 680 | 0.1071 | - | - |
| 0.8376 | 681 | 0.2142 | - | - |
| 0.8389 | 682 | 0.2029 | - | - |
| 0.8401 | 683 | 0.1171 | - | - |
| 0.8413 | 684 | 0.176 | - | - |
| 0.8426 | 685 | 0.1052 | - | - |
| 0.8438 | 686 | 0.1892 | - | - |
| 0.8450 | 687 | 0.1499 | - | - |
| 0.8462 | 688 | 0.1414 | - | - |
| 0.8475 | 689 | 0.1193 | - | - |
| 0.8487 | 690 | 0.1516 | - | - |
| 0.8499 | 691 | 0.1552 | - | - |
| 0.8512 | 692 | 0.1168 | - | - |
| 0.8524 | 693 | 0.2326 | 0.0932 | 0.9071 |
| 0.8536 | 694 | 0.2112 | - | - |
| 0.8549 | 695 | 0.0835 | - | - |
| 0.8561 | 696 | 0.1512 | - | - |
| 0.8573 | 697 | 0.1379 | - | - |
| 0.8585 | 698 | 0.1045 | - | - |
| 0.8598 | 699 | 0.2045 | - | - |
| 0.8610 | 700 | 0.1909 | - | - |
| 0.8622 | 701 | 0.1895 | - | - |
| 0.8635 | 702 | 0.2077 | - | - |
| 0.8647 | 703 | 0.1199 | - | - |
| 0.8659 | 704 | 0.1606 | - | - |
| 0.8672 | 705 | 0.1501 | - | - |
| 0.8684 | 706 | 0.1711 | - | - |
| 0.8696 | 707 | 0.222 | - | - |
| 0.8708 | 708 | 0.1414 | - | - |
| 0.8721 | 709 | 0.1972 | - | - |
| 0.8733 | 710 | 0.1074 | - | - |
| 0.8745 | 711 | 0.2044 | - | - |
| 0.8758 | 712 | 0.0997 | - | - |
| 0.8770 | 713 | 0.1178 | - | - |
| 0.8782 | 714 | 0.1376 | 0.0929 | 0.9058 |
| 0.8795 | 715 | 0.1302 | - | - |
| 0.8807 | 716 | 0.1252 | - | - |
| 0.8819 | 717 | 0.2365 | - | - |
| 0.8831 | 718 | 0.1405 | - | - |
| 0.8844 | 719 | 0.1806 | - | - |
| 0.8856 | 720 | 0.1495 | - | - |
| 0.8868 | 721 | 0.1987 | - | - |
| 0.8881 | 722 | 0.096 | - | - |
| 0.8893 | 723 | 0.1728 | - | - |
| 0.8905 | 724 | 0.2104 | - | - |
| 0.8918 | 725 | 0.1562 | - | - |
| 0.8930 | 726 | 0.1358 | - | - |
| 0.8942 | 727 | 0.1723 | - | - |
| 0.8954 | 728 | 0.1947 | - | - |
| 0.8967 | 729 | 0.1572 | - | - |
| 0.8979 | 730 | 0.1124 | - | - |
| 0.8991 | 731 | 0.2272 | - | - |
| 0.9004 | 732 | 0.1356 | - | - |
| 0.9016 | 733 | 0.1816 | - | - |
| 0.9028 | 734 | 0.1011 | - | - |
| 0.9041 | 735 | 0.124 | 0.0911 | 0.9051 |
| 0.9053 | 736 | 0.1873 | - | - |
| 0.9065 | 737 | 0.0702 | - | - |
| 0.9077 | 738 | 0.15 | - | - |
| 0.9090 | 739 | 0.221 | - | - |
| 0.9102 | 740 | 0.1511 | - | - |
| 0.9114 | 741 | 0.195 | - | - |
| 0.9127 | 742 | 0.1473 | - | - |
| 0.9139 | 743 | 0.1311 | - | - |
| 0.9151 | 744 | 0.1869 | - | - |
| 0.9164 | 745 | 0.1433 | - | - |
| 0.9176 | 746 | 0.1286 | - | - |
| 0.9188 | 747 | 0.1316 | - | - |
| 0.9200 | 748 | 0.1669 | - | - |
| 0.9213 | 749 | 0.1691 | - | - |
| 0.9225 | 750 | 0.1853 | - | - |
| 0.9237 | 751 | 0.1813 | - | - |
| 0.9250 | 752 | 0.1754 | - | - |
| 0.9262 | 753 | 0.2282 | - | - |
| 0.9274 | 754 | 0.1248 | - | - |
| 0.9287 | 755 | 0.1182 | - | - |
| 0.9299 | 756 | 0.1601 | 0.0903 | 0.9059 |
| 0.9311 | 757 | 0.2377 | - | - |
| 0.9323 | 758 | 0.1799 | - | - |
| 0.9336 | 759 | 0.2016 | - | - |
| 0.9348 | 760 | 0.1293 | - | - |
| 0.9360 | 761 | 0.2038 | - | - |
| 0.9373 | 762 | 0.1384 | - | - |
| 0.9385 | 763 | 0.1856 | - | - |
| 0.9397 | 764 | 0.2775 | - | - |
| 0.9410 | 765 | 0.1651 | - | - |
| 0.9422 | 766 | 0.2072 | - | - |
| 0.9434 | 767 | 0.1459 | - | - |
| 0.9446 | 768 | 0.1277 | - | - |
| 0.9459 | 769 | 0.1742 | - | - |
| 0.9471 | 770 | 0.1978 | - | - |
| 0.9483 | 771 | 0.1992 | - | - |
| 0.9496 | 772 | 0.1649 | - | - |
| 0.9508 | 773 | 0.2195 | - | - |
| 0.9520 | 774 | 0.1348 | - | - |
| 0.9533 | 775 | 0.1556 | - | - |
| 0.9545 | 776 | 0.2293 | - | - |
| 0.9557 | 777 | 0.1585 | 0.0904 | 0.9062 |
| 0.9569 | 778 | 0.1029 | - | - |
| 0.9582 | 779 | 0.1027 | - | - |
| 0.9594 | 780 | 0.1165 | - | - |
| 0.9606 | 781 | 0.1654 | - | - |
| 0.9619 | 782 | 0.1706 | - | - |
| 0.9631 | 783 | 0.102 | - | - |
| 0.9643 | 784 | 0.1697 | - | - |
| 0.9656 | 785 | 0.177 | - | - |
| 0.9668 | 786 | 0.1718 | - | - |
| 0.9680 | 787 | 0.1542 | - | - |
| 0.9692 | 788 | 0.1654 | - | - |
| 0.9705 | 789 | 0.1672 | - | - |
| 0.9717 | 790 | 0.1867 | - | - |
| 0.9729 | 791 | 0.1717 | - | - |
| 0.9742 | 792 | 0.1701 | - | - |
| 0.9754 | 793 | 0.1542 | - | - |
| 0.9766 | 794 | 0.2153 | - | - |
| 0.9779 | 795 | 0.131 | - | - |
| 0.9791 | 796 | 0.1448 | - | - |
| 0.9803 | 797 | 0.1171 | - | - |
| 0.9815 | 798 | 0.1585 | 0.0904 | 0.9063 |
| 0.9828 | 799 | 0.1352 | - | - |
| 0.9840 | 800 | 0.1146 | - | - |
| 0.9852 | 801 | 0.1366 | - | - |
| 0.9865 | 802 | 0.1375 | - | - |
| 0.9877 | 803 | 0.1588 | - | - |
| 0.9889 | 804 | 0.1429 | - | - |
| 0.9902 | 805 | 0.1541 | - | - |
| 0.9914 | 806 | 0.1171 | - | - |
| 0.9926 | 807 | 0.1352 | - | - |
| 0.9938 | 808 | 0.1948 | - | - |
| 0.9951 | 809 | 0.1628 | - | - |
| 0.9963 | 810 | 0.1115 | - | - |
| 0.9975 | 811 | 0.0929 | - | - |
| 0.9988 | 812 | 0.0955 | - | - |
| 1.0 | 813 | 0.0 | 0.0904 | 0.9063 |
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |