Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-base
|
3 |
+
datasets:
|
4 |
+
- tals/vitaminc
|
5 |
+
- allenai/scitail
|
6 |
+
- allenai/sciq
|
7 |
+
- allenai/qasc
|
8 |
+
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
|
9 |
+
- sentence-transformers/natural-questions
|
10 |
+
- sentence-transformers/trivia-qa
|
11 |
+
- sentence-transformers/gooaq
|
12 |
+
- google-research-datasets/paws
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
library_name: sentence-transformers
|
16 |
+
metrics:
|
17 |
+
- pearson_cosine
|
18 |
+
- spearman_cosine
|
19 |
+
- pearson_manhattan
|
20 |
+
- spearman_manhattan
|
21 |
+
- pearson_euclidean
|
22 |
+
- spearman_euclidean
|
23 |
+
- pearson_dot
|
24 |
+
- spearman_dot
|
25 |
+
- pearson_max
|
26 |
+
- spearman_max
|
27 |
+
- cosine_accuracy
|
28 |
+
- cosine_accuracy_threshold
|
29 |
+
- cosine_f1
|
30 |
+
- cosine_f1_threshold
|
31 |
+
- cosine_precision
|
32 |
+
- cosine_recall
|
33 |
+
- cosine_ap
|
34 |
+
- dot_accuracy
|
35 |
+
- dot_accuracy_threshold
|
36 |
+
- dot_f1
|
37 |
+
- dot_f1_threshold
|
38 |
+
- dot_precision
|
39 |
+
- dot_recall
|
40 |
+
- dot_ap
|
41 |
+
- manhattan_accuracy
|
42 |
+
- manhattan_accuracy_threshold
|
43 |
+
- manhattan_f1
|
44 |
+
- manhattan_f1_threshold
|
45 |
+
- manhattan_precision
|
46 |
+
- manhattan_recall
|
47 |
+
- manhattan_ap
|
48 |
+
- euclidean_accuracy
|
49 |
+
- euclidean_accuracy_threshold
|
50 |
+
- euclidean_f1
|
51 |
+
- euclidean_f1_threshold
|
52 |
+
- euclidean_precision
|
53 |
+
- euclidean_recall
|
54 |
+
- euclidean_ap
|
55 |
+
- max_accuracy
|
56 |
+
- max_accuracy_threshold
|
57 |
+
- max_f1
|
58 |
+
- max_f1_threshold
|
59 |
+
- max_precision
|
60 |
+
- max_recall
|
61 |
+
- max_ap
|
62 |
+
pipeline_tag: sentence-similarity
|
63 |
+
tags:
|
64 |
+
- sentence-transformers
|
65 |
+
- sentence-similarity
|
66 |
+
- feature-extraction
|
67 |
+
- generated_from_trainer
|
68 |
+
- dataset_size:123245
|
69 |
+
- loss:CachedGISTEmbedLoss
|
70 |
+
widget:
|
71 |
+
- source_sentence: what type of inheritance does haemochromatosis
|
72 |
+
sentences:
|
73 |
+
- Nestled on the tranquil banks of the Pamlico River, Moss Landing is a vibrant
|
74 |
+
new community of thoughtfully conceived, meticulously crafted single-family homes
|
75 |
+
in Washington, North Carolina. Washington is renowned for its historic architecture
|
76 |
+
and natural beauty.
|
77 |
+
- '1 Microwave on high for 8 to 10 minutes or until tender, turning the yams once.
|
78 |
+
2 To microwave sliced yams: Wash, peel, and cut off the woody portions and ends.
|
79 |
+
3 Cut yams into quarters. 4 Place the yams and 1/2 cup water in a microwave-safe
|
80 |
+
casserole.ake the Yams. 1 Place half the yams in a 1-quart casserole. 2 Layer
|
81 |
+
with half the brown sugar and half the margarine. 3 Repeat the layers. 4 Bake,
|
82 |
+
uncovered, in a 375 degree F oven for 30 to 35 minutes or until the yams are glazed,
|
83 |
+
spooning the liquid over the yams once or twice during cooking.'
|
84 |
+
- Types 1, 2, and 3 hemochromatosis are inherited in an autosomal recessive pattern,
|
85 |
+
which means both copies of the gene in each cell have mutations. Most often, the
|
86 |
+
parents of an individual with an autosomal recessive condition each carry one
|
87 |
+
copy of the mutated gene but do not show signs and symptoms of the condition.Type
|
88 |
+
4 hemochromatosis is distinguished by its autosomal dominant inheritance pattern.With
|
89 |
+
this type of inheritance, one copy of the altered gene in each cell is sufficient
|
90 |
+
to cause the disorder. In most cases, an affected person has one parent with the
|
91 |
+
condition.ype 1, the most common form of the disorder, and type 4 (also called
|
92 |
+
ferroportin disease) begin in adulthood. Men with type 1 or type 4 hemochromatosis
|
93 |
+
typically develop symptoms between the ages of 40 and 60, and women usually develop
|
94 |
+
symptoms after menopause. Type 2 hemochromatosis is a juvenile-onset disorder.
|
95 |
+
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
|
96 |
+
mainland China .
|
97 |
+
sentences:
|
98 |
+
- 'More than 3,700 people have died : around 3,100 in mainland China and around
|
99 |
+
550 in all other countries combined .'
|
100 |
+
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
|
101 |
+
275 in other countries .'
|
102 |
+
- more than 4,900 deaths have been attributed to COVID-19 .
|
103 |
+
- source_sentence: The male reproductive system consists of structures that produce
|
104 |
+
sperm and secrete testosterone.
|
105 |
+
sentences:
|
106 |
+
- What does the male reproductive system consist of?
|
107 |
+
- What facilitates the diffusion of ions across a membrane?
|
108 |
+
- Autoimmunity can develop with time, and its causes may be rooted in this?
|
109 |
+
- source_sentence: Nitrogen gas comprises about three-fourths of earth's atmosphere.
|
110 |
+
sentences:
|
111 |
+
- What do all cells have in common?
|
112 |
+
- What gas comprises about three-fourths of earth's atmosphere?
|
113 |
+
- What do you call an animal in which the embryo, often termed a joey, is born immature
|
114 |
+
and must complete its development outside the mother's body?
|
115 |
+
- source_sentence: What device is used to regulate a person's heart rate?
|
116 |
+
sentences:
|
117 |
+
- 'Marie Antoinette and the French Revolution . Famous Faces . Mad Max:
|
118 |
+
Maximilien Robespierre | PBS Extended Interviews > Resources > For Educators
|
119 |
+
> Mad Max: Maximilien Robespierre Maximilien Robespierre was born May 6, 1758
|
120 |
+
in Arras, France. Educated at the Lycée Louis-le-Grand in Paris as a lawyer, Robespierre
|
121 |
+
became a disciple of philosopher Jean-Jacques Rousseau and a passionate advocate
|
122 |
+
for the poor. Called "the Incorruptible" because of his unwavering dedication
|
123 |
+
to the Revolution, Robespierre joined the Jacobin Club and earned a loyal following.
|
124 |
+
In contrast to the more republican Girondins and Marie Antoinette, Robespierre
|
125 |
+
fiercely opposed declaring war on Austria, feeling it would distract from revolutionary
|
126 |
+
progress in France. Robespierre''s exemplary oratory skills influenced the National
|
127 |
+
Convention in 1792 to avoid seeking public opinion about the Convention’s decision
|
128 |
+
to execute King Louis XVI. In 1793, the Convention elected Robespierre to the
|
129 |
+
Committee of Public Defense. He was a highly controversial member, developing
|
130 |
+
radical policies, warning of conspiracies, and suggesting restructuring the Convention.
|
131 |
+
This behavior eventually led to his downfall, and he was guillotined without trial
|
132 |
+
on 10th Thermidor An II (July 28, 1794), marking the end of the Reign of Terror.
|
133 |
+
Famous Faces'
|
134 |
+
- Devices for Arrhythmia Devices for Arrhythmia Updated:Dec 21,2016 In a medical
|
135 |
+
emergency, life-threatening arrhythmias may be stopped by giving the heart an
|
136 |
+
electric shock (as with a defibrillator ). For people with recurrent arrhythmias,
|
137 |
+
medical devices such as a pacemaker and implantable cardioverter defibrillator
|
138 |
+
(ICD) can help by continuously monitoring the heart's electrical system and providing
|
139 |
+
automatic correction when an arrhythmia starts to occur. This section covers everything
|
140 |
+
you need to know about these devices. Implantable Cardioverter Defibrillator (ICD)
|
141 |
+
- 'vintage cleats | eBay vintage cleats: 1 2 3 4 5 eBay determines this price through
|
142 |
+
a machine learned model of the product''s sale prices within the last 90 days.
|
143 |
+
eBay determines trending price through a machine learned model of the product’s
|
144 |
+
sale prices within the last 90 days. "New" refers to a brand-new, unused, unopened,
|
145 |
+
undamaged item, and "Used" refers to an item that has been used previously. Top
|
146 |
+
Rated Plus Sellers with highest buyer ratings Returns, money back Sellers with
|
147 |
+
highest buyer ratings Returns, money back'
|
148 |
+
model-index:
|
149 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-base
|
150 |
+
results:
|
151 |
+
- task:
|
152 |
+
type: semantic-similarity
|
153 |
+
name: Semantic Similarity
|
154 |
+
dataset:
|
155 |
+
name: sts test
|
156 |
+
type: sts-test
|
157 |
+
metrics:
|
158 |
+
- type: pearson_cosine
|
159 |
+
value: 0.8253431554642914
|
160 |
+
name: Pearson Cosine
|
161 |
+
- type: spearman_cosine
|
162 |
+
value: 0.870857890879963
|
163 |
+
name: Spearman Cosine
|
164 |
+
- type: pearson_manhattan
|
165 |
+
value: 0.8653068915625914
|
166 |
+
name: Pearson Manhattan
|
167 |
+
- type: spearman_manhattan
|
168 |
+
value: 0.8667110599943904
|
169 |
+
name: Spearman Manhattan
|
170 |
+
- type: pearson_euclidean
|
171 |
+
value: 0.8671346646296434
|
172 |
+
name: Pearson Euclidean
|
173 |
+
- type: spearman_euclidean
|
174 |
+
value: 0.8681442638917114
|
175 |
+
name: Spearman Euclidean
|
176 |
+
- type: pearson_dot
|
177 |
+
value: 0.7826717704847901
|
178 |
+
name: Pearson Dot
|
179 |
+
- type: spearman_dot
|
180 |
+
value: 0.7685403521338614
|
181 |
+
name: Spearman Dot
|
182 |
+
- type: pearson_max
|
183 |
+
value: 0.8671346646296434
|
184 |
+
name: Pearson Max
|
185 |
+
- type: spearman_max
|
186 |
+
value: 0.870857890879963
|
187 |
+
name: Spearman Max
|
188 |
+
- task:
|
189 |
+
type: binary-classification
|
190 |
+
name: Binary Classification
|
191 |
+
dataset:
|
192 |
+
name: allNLI dev
|
193 |
+
type: allNLI-dev
|
194 |
+
metrics:
|
195 |
+
- type: cosine_accuracy
|
196 |
+
value: 0.71875
|
197 |
+
name: Cosine Accuracy
|
198 |
+
- type: cosine_accuracy_threshold
|
199 |
+
value: 0.8745474815368652
|
200 |
+
name: Cosine Accuracy Threshold
|
201 |
+
- type: cosine_f1
|
202 |
+
value: 0.617169373549884
|
203 |
+
name: Cosine F1
|
204 |
+
- type: cosine_f1_threshold
|
205 |
+
value: 0.7519949674606323
|
206 |
+
name: Cosine F1 Threshold
|
207 |
+
- type: cosine_precision
|
208 |
+
value: 0.5155038759689923
|
209 |
+
name: Cosine Precision
|
210 |
+
- type: cosine_recall
|
211 |
+
value: 0.7687861271676301
|
212 |
+
name: Cosine Recall
|
213 |
+
- type: cosine_ap
|
214 |
+
value: 0.6116004689391709
|
215 |
+
name: Cosine Ap
|
216 |
+
- type: dot_accuracy
|
217 |
+
value: 0.693359375
|
218 |
+
name: Dot Accuracy
|
219 |
+
- type: dot_accuracy_threshold
|
220 |
+
value: 401.3755187988281
|
221 |
+
name: Dot Accuracy Threshold
|
222 |
+
- type: dot_f1
|
223 |
+
value: 0.566735112936345
|
224 |
+
name: Dot F1
|
225 |
+
- type: dot_f1_threshold
|
226 |
+
value: 295.2575988769531
|
227 |
+
name: Dot F1 Threshold
|
228 |
+
- type: dot_precision
|
229 |
+
value: 0.4394904458598726
|
230 |
+
name: Dot Precision
|
231 |
+
- type: dot_recall
|
232 |
+
value: 0.7976878612716763
|
233 |
+
name: Dot Recall
|
234 |
+
- type: dot_ap
|
235 |
+
value: 0.5243551756921989
|
236 |
+
name: Dot Ap
|
237 |
+
- type: manhattan_accuracy
|
238 |
+
value: 0.724609375
|
239 |
+
name: Manhattan Accuracy
|
240 |
+
- type: manhattan_accuracy_threshold
|
241 |
+
value: 228.3092498779297
|
242 |
+
name: Manhattan Accuracy Threshold
|
243 |
+
- type: manhattan_f1
|
244 |
+
value: 0.6267281105990783
|
245 |
+
name: Manhattan F1
|
246 |
+
- type: manhattan_f1_threshold
|
247 |
+
value: 266.0207824707031
|
248 |
+
name: Manhattan F1 Threshold
|
249 |
+
- type: manhattan_precision
|
250 |
+
value: 0.5210727969348659
|
251 |
+
name: Manhattan Precision
|
252 |
+
- type: manhattan_recall
|
253 |
+
value: 0.7861271676300579
|
254 |
+
name: Manhattan Recall
|
255 |
+
- type: manhattan_ap
|
256 |
+
value: 0.6101425904568746
|
257 |
+
name: Manhattan Ap
|
258 |
+
- type: euclidean_accuracy
|
259 |
+
value: 0.720703125
|
260 |
+
name: Euclidean Accuracy
|
261 |
+
- type: euclidean_accuracy_threshold
|
262 |
+
value: 9.726119041442871
|
263 |
+
name: Euclidean Accuracy Threshold
|
264 |
+
- type: euclidean_f1
|
265 |
+
value: 0.6303854875283447
|
266 |
+
name: Euclidean F1
|
267 |
+
- type: euclidean_f1_threshold
|
268 |
+
value: 14.837699890136719
|
269 |
+
name: Euclidean F1 Threshold
|
270 |
+
- type: euclidean_precision
|
271 |
+
value: 0.5186567164179104
|
272 |
+
name: Euclidean Precision
|
273 |
+
- type: euclidean_recall
|
274 |
+
value: 0.8034682080924855
|
275 |
+
name: Euclidean Recall
|
276 |
+
- type: euclidean_ap
|
277 |
+
value: 0.6172110045723997
|
278 |
+
name: Euclidean Ap
|
279 |
+
- type: max_accuracy
|
280 |
+
value: 0.724609375
|
281 |
+
name: Max Accuracy
|
282 |
+
- type: max_accuracy_threshold
|
283 |
+
value: 401.3755187988281
|
284 |
+
name: Max Accuracy Threshold
|
285 |
+
- type: max_f1
|
286 |
+
value: 0.6303854875283447
|
287 |
+
name: Max F1
|
288 |
+
- type: max_f1_threshold
|
289 |
+
value: 295.2575988769531
|
290 |
+
name: Max F1 Threshold
|
291 |
+
- type: max_precision
|
292 |
+
value: 0.5210727969348659
|
293 |
+
name: Max Precision
|
294 |
+
- type: max_recall
|
295 |
+
value: 0.8034682080924855
|
296 |
+
name: Max Recall
|
297 |
+
- type: max_ap
|
298 |
+
value: 0.6172110045723997
|
299 |
+
name: Max Ap
|
300 |
+
- task:
|
301 |
+
type: binary-classification
|
302 |
+
name: Binary Classification
|
303 |
+
dataset:
|
304 |
+
name: Qnli dev
|
305 |
+
type: Qnli-dev
|
306 |
+
metrics:
|
307 |
+
- type: cosine_accuracy
|
308 |
+
value: 0.673828125
|
309 |
+
name: Cosine Accuracy
|
310 |
+
- type: cosine_accuracy_threshold
|
311 |
+
value: 0.7472400069236755
|
312 |
+
name: Cosine Accuracy Threshold
|
313 |
+
- type: cosine_f1
|
314 |
+
value: 0.6863468634686347
|
315 |
+
name: Cosine F1
|
316 |
+
- type: cosine_f1_threshold
|
317 |
+
value: 0.7334084510803223
|
318 |
+
name: Cosine F1 Threshold
|
319 |
+
- type: cosine_precision
|
320 |
+
value: 0.6078431372549019
|
321 |
+
name: Cosine Precision
|
322 |
+
- type: cosine_recall
|
323 |
+
value: 0.788135593220339
|
324 |
+
name: Cosine Recall
|
325 |
+
- type: cosine_ap
|
326 |
+
value: 0.7293502303398447
|
327 |
+
name: Cosine Ap
|
328 |
+
- type: dot_accuracy
|
329 |
+
value: 0.6484375
|
330 |
+
name: Dot Accuracy
|
331 |
+
- type: dot_accuracy_threshold
|
332 |
+
value: 392.88726806640625
|
333 |
+
name: Dot Accuracy Threshold
|
334 |
+
- type: dot_f1
|
335 |
+
value: 0.6634920634920635
|
336 |
+
name: Dot F1
|
337 |
+
- type: dot_f1_threshold
|
338 |
+
value: 310.97833251953125
|
339 |
+
name: Dot F1 Threshold
|
340 |
+
- type: dot_precision
|
341 |
+
value: 0.5304568527918782
|
342 |
+
name: Dot Precision
|
343 |
+
- type: dot_recall
|
344 |
+
value: 0.885593220338983
|
345 |
+
name: Dot Recall
|
346 |
+
- type: dot_ap
|
347 |
+
value: 0.6331200610041253
|
348 |
+
name: Dot Ap
|
349 |
+
- type: manhattan_accuracy
|
350 |
+
value: 0.671875
|
351 |
+
name: Manhattan Accuracy
|
352 |
+
- type: manhattan_accuracy_threshold
|
353 |
+
value: 277.69342041015625
|
354 |
+
name: Manhattan Accuracy Threshold
|
355 |
+
- type: manhattan_f1
|
356 |
+
value: 0.6830122591943958
|
357 |
+
name: Manhattan F1
|
358 |
+
- type: manhattan_f1_threshold
|
359 |
+
value: 301.36639404296875
|
360 |
+
name: Manhattan F1 Threshold
|
361 |
+
- type: manhattan_precision
|
362 |
+
value: 0.582089552238806
|
363 |
+
name: Manhattan Precision
|
364 |
+
- type: manhattan_recall
|
365 |
+
value: 0.826271186440678
|
366 |
+
name: Manhattan Recall
|
367 |
+
- type: manhattan_ap
|
368 |
+
value: 0.7276384343706648
|
369 |
+
name: Manhattan Ap
|
370 |
+
- type: euclidean_accuracy
|
371 |
+
value: 0.68359375
|
372 |
+
name: Euclidean Accuracy
|
373 |
+
- type: euclidean_accuracy_threshold
|
374 |
+
value: 15.343950271606445
|
375 |
+
name: Euclidean Accuracy Threshold
|
376 |
+
- type: euclidean_f1
|
377 |
+
value: 0.6895238095238095
|
378 |
+
name: Euclidean F1
|
379 |
+
- type: euclidean_f1_threshold
|
380 |
+
value: 15.738676071166992
|
381 |
+
name: Euclidean F1 Threshold
|
382 |
+
- type: euclidean_precision
|
383 |
+
value: 0.6262975778546713
|
384 |
+
name: Euclidean Precision
|
385 |
+
- type: euclidean_recall
|
386 |
+
value: 0.7669491525423728
|
387 |
+
name: Euclidean Recall
|
388 |
+
- type: euclidean_ap
|
389 |
+
value: 0.7307379367367225
|
390 |
+
name: Euclidean Ap
|
391 |
+
- type: max_accuracy
|
392 |
+
value: 0.68359375
|
393 |
+
name: Max Accuracy
|
394 |
+
- type: max_accuracy_threshold
|
395 |
+
value: 392.88726806640625
|
396 |
+
name: Max Accuracy Threshold
|
397 |
+
- type: max_f1
|
398 |
+
value: 0.6895238095238095
|
399 |
+
name: Max F1
|
400 |
+
- type: max_f1_threshold
|
401 |
+
value: 310.97833251953125
|
402 |
+
name: Max F1 Threshold
|
403 |
+
- type: max_precision
|
404 |
+
value: 0.6262975778546713
|
405 |
+
name: Max Precision
|
406 |
+
- type: max_recall
|
407 |
+
value: 0.885593220338983
|
408 |
+
name: Max Recall
|
409 |
+
- type: max_ap
|
410 |
+
value: 0.7307379367367225
|
411 |
+
name: Max Ap
|
412 |
+
---
|
413 |
+
|
414 |
+
# SentenceTransformer based on microsoft/deberta-v3-base
|
415 |
+
|
416 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
417 |
+
|
418 |
+
## Model Details
|
419 |
+
|
420 |
+
### Model Description
|
421 |
+
- **Model Type:** Sentence Transformer
|
422 |
+
- **Base model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) <!-- at revision 8ccc9b6f36199bec6961081d44eb72fb3f7353f3 -->
|
423 |
+
- **Maximum Sequence Length:** 512 tokens
|
424 |
+
- **Output Dimensionality:** 768 tokens
|
425 |
+
- **Similarity Function:** Cosine Similarity
|
426 |
+
- **Training Datasets:**
|
427 |
+
- negation-triplets
|
428 |
+
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
|
429 |
+
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
|
430 |
+
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
|
431 |
+
- xsum-pairs
|
432 |
+
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
|
433 |
+
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
|
434 |
+
- openbookqa_pairs
|
435 |
+
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
|
436 |
+
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
|
437 |
+
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
|
438 |
+
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
|
439 |
+
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
|
440 |
+
- global_dataset
|
441 |
+
- **Language:** en
|
442 |
+
<!-- - **License:** Unknown -->
|
443 |
+
## Evaluation
|
444 |
+
|
445 |
+
### Metrics
|
446 |
+
|
447 |
+
#### Semantic Similarity
|
448 |
+
* Dataset: `sts-test`
|
449 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
450 |
+
|
451 |
+
| Metric | Value |
|
452 |
+
|:--------------------|:-----------|
|
453 |
+
| pearson_cosine | 0.8253 |
|
454 |
+
| **spearman_cosine** | **0.8709** |
|
455 |
+
| pearson_manhattan | 0.8653 |
|
456 |
+
| spearman_manhattan | 0.8667 |
|
457 |
+
| pearson_euclidean | 0.8671 |
|
458 |
+
| spearman_euclidean | 0.8681 |
|
459 |
+
| pearson_dot | 0.7827 |
|
460 |
+
| spearman_dot | 0.7685 |
|
461 |
+
| pearson_max | 0.8671 |
|
462 |
+
| spearman_max | 0.8709 |
|
463 |
+
|
464 |
+
|
465 |
+
<!--
|
466 |
+
## Bias, Risks and Limitations
|
467 |
+
|
468 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
469 |
+
-->
|
470 |
+
|
471 |
+
|
472 |
+
### Training Hyperparameters
|
473 |
+
#### Non-Default Hyperparameters
|
474 |
+
|
475 |
+
- `eval_strategy`: steps
|
476 |
+
- `per_device_train_batch_size`: 96
|
477 |
+
- `per_device_eval_batch_size`: 68
|
478 |
+
- `learning_rate`: 3.5e-05
|
479 |
+
- `weight_decay`: 0.0005
|
480 |
+
- `num_train_epochs`: 2
|
481 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
482 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
|
483 |
+
- `warmup_ratio`: 0.33
|
484 |
+
- `save_safetensors`: False
|
485 |
+
- `fp16`: True
|
486 |
+
- `push_to_hub`: True
|
487 |
+
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
|
488 |
+
- `hub_strategy`: all_checkpoints
|
489 |
+
- `batch_sampler`: no_duplicates
|
490 |
+
|
491 |
+
#### All Hyperparameters
|
492 |
+
<details><summary>Click to expand</summary>
|
493 |
+
|
494 |
+
- `overwrite_output_dir`: False
|
495 |
+
- `do_predict`: False
|
496 |
+
- `eval_strategy`: steps
|
497 |
+
- `prediction_loss_only`: True
|
498 |
+
- `per_device_train_batch_size`: 96
|
499 |
+
- `per_device_eval_batch_size`: 68
|
500 |
+
- `per_gpu_train_batch_size`: None
|
501 |
+
- `per_gpu_eval_batch_size`: None
|
502 |
+
- `gradient_accumulation_steps`: 1
|
503 |
+
- `eval_accumulation_steps`: None
|
504 |
+
- `torch_empty_cache_steps`: None
|
505 |
+
- `learning_rate`: 3.5e-05
|
506 |
+
- `weight_decay`: 0.0005
|
507 |
+
- `adam_beta1`: 0.9
|
508 |
+
- `adam_beta2`: 0.999
|
509 |
+
- `adam_epsilon`: 1e-08
|
510 |
+
- `max_grad_norm`: 1.0
|
511 |
+
- `num_train_epochs`: 2
|
512 |
+
- `max_steps`: -1
|
513 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
514 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
|
515 |
+
- `warmup_ratio`: 0.33
|
516 |
+
- `warmup_steps`: 0
|
517 |
+
- `log_level`: passive
|
518 |
+
- `log_level_replica`: warning
|
519 |
+
- `log_on_each_node`: True
|
520 |
+
- `logging_nan_inf_filter`: True
|
521 |
+
- `save_safetensors`: False
|
522 |
+
- `save_on_each_node`: False
|
523 |
+
- `save_only_model`: False
|
524 |
+
- `restore_callback_states_from_checkpoint`: False
|
525 |
+
- `no_cuda`: False
|
526 |
+
- `use_cpu`: False
|
527 |
+
- `use_mps_device`: False
|
528 |
+
- `seed`: 42
|
529 |
+
- `data_seed`: None
|
530 |
+
- `jit_mode_eval`: False
|
531 |
+
- `use_ipex`: False
|
532 |
+
- `bf16`: False
|
533 |
+
- `fp16`: True
|
534 |
+
- `fp16_opt_level`: O1
|
535 |
+
- `half_precision_backend`: auto
|
536 |
+
- `bf16_full_eval`: False
|
537 |
+
- `fp16_full_eval`: False
|
538 |
+
- `tf32`: None
|
539 |
+
- `local_rank`: 0
|
540 |
+
- `ddp_backend`: None
|
541 |
+
- `tpu_num_cores`: None
|
542 |
+
- `tpu_metrics_debug`: False
|
543 |
+
- `debug`: []
|
544 |
+
- `dataloader_drop_last`: False
|
545 |
+
- `dataloader_num_workers`: 0
|
546 |
+
- `dataloader_prefetch_factor`: None
|
547 |
+
- `past_index`: -1
|
548 |
+
- `disable_tqdm`: False
|
549 |
+
- `remove_unused_columns`: True
|
550 |
+
- `label_names`: None
|
551 |
+
- `load_best_model_at_end`: False
|
552 |
+
- `ignore_data_skip`: False
|
553 |
+
- `fsdp`: []
|
554 |
+
- `fsdp_min_num_params`: 0
|
555 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
556 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
557 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
558 |
+
- `deepspeed`: None
|
559 |
+
- `label_smoothing_factor`: 0.0
|
560 |
+
- `optim`: adamw_torch
|
561 |
+
- `optim_args`: None
|
562 |
+
- `adafactor`: False
|
563 |
+
- `group_by_length`: False
|
564 |
+
- `length_column_name`: length
|
565 |
+
- `ddp_find_unused_parameters`: None
|
566 |
+
- `ddp_bucket_cap_mb`: None
|
567 |
+
- `ddp_broadcast_buffers`: False
|
568 |
+
- `dataloader_pin_memory`: True
|
569 |
+
- `dataloader_persistent_workers`: False
|
570 |
+
- `skip_memory_metrics`: True
|
571 |
+
- `use_legacy_prediction_loop`: False
|
572 |
+
- `push_to_hub`: True
|
573 |
+
- `resume_from_checkpoint`: None
|
574 |
+
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
|
575 |
+
- `hub_strategy`: all_checkpoints
|
576 |
+
- `hub_private_repo`: False
|
577 |
+
- `hub_always_push`: False
|
578 |
+
- `gradient_checkpointing`: False
|
579 |
+
- `gradient_checkpointing_kwargs`: None
|
580 |
+
- `include_inputs_for_metrics`: False
|
581 |
+
- `eval_do_concat_batches`: True
|
582 |
+
- `fp16_backend`: auto
|
583 |
+
- `push_to_hub_model_id`: None
|
584 |
+
- `push_to_hub_organization`: None
|
585 |
+
- `mp_parameters`:
|
586 |
+
- `auto_find_batch_size`: False
|
587 |
+
- `full_determinism`: False
|
588 |
+
- `torchdynamo`: None
|
589 |
+
- `ray_scope`: last
|
590 |
+
- `ddp_timeout`: 1800
|
591 |
+
- `torch_compile`: False
|
592 |
+
- `torch_compile_backend`: None
|
593 |
+
- `torch_compile_mode`: None
|
594 |
+
- `dispatch_batches`: None
|
595 |
+
- `split_batches`: None
|
596 |
+
- `include_tokens_per_second`: False
|
597 |
+
- `include_num_input_tokens_seen`: False
|
598 |
+
- `neftune_noise_alpha`: None
|
599 |
+
- `optim_target_modules`: None
|
600 |
+
- `batch_eval_metrics`: False
|
601 |
+
- `eval_on_start`: False
|
602 |
+
- `eval_use_gather_object`: False
|
603 |
+
- `batch_sampler`: no_duplicates
|
604 |
+
- `multi_dataset_batch_sampler`: proportional
|
605 |
+
|
606 |
+
</details>
|
607 |
+
|
608 |
+
|
609 |
+
### Framework Versions
|
610 |
+
- Python: 3.10.14
|
611 |
+
- Sentence Transformers: 3.0.1
|
612 |
+
- Transformers: 4.44.0
|
613 |
+
- PyTorch: 2.4.0
|
614 |
+
- Accelerate: 0.33.0
|
615 |
+
- Datasets: 2.21.0
|
616 |
+
- Tokenizers: 0.19.1
|
617 |
+
|
618 |
+
## Citation
|
619 |
+
|
620 |
+
### BibTeX
|
621 |
+
|
622 |
+
#### Sentence Transformers
|
623 |
+
```bibtex
|
624 |
+
@inproceedings{reimers-2019-sentence-bert,
|
625 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
626 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
627 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
628 |
+
month = "11",
|
629 |
+
year = "2019",
|
630 |
+
publisher = "Association for Computational Linguistics",
|
631 |
+
url = "https://arxiv.org/abs/1908.10084",
|
632 |
+
}
|
633 |
+
```
|