bobox commited on
Commit
6302c55
1 Parent(s): 41ae15d

all layer trained for every step, 2 epoch, 50% warmup

Browse files

n_layers_per_step = 3, last_layer_weight = 1, prior_layers_weight= 0.3, kl_div_weight = 1, kl_temperature= 1, lr = 1e-6. batch = 48, schedule = cosine

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:67190
11
+ - loss:AdaptiveLayerLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: microsoft/deberta-v3-small
14
+ datasets:
15
+ - stanfordnlp/snli
16
+ metrics:
17
+ - cosine_accuracy
18
+ - cosine_accuracy_threshold
19
+ - cosine_f1
20
+ - cosine_f1_threshold
21
+ - cosine_precision
22
+ - cosine_recall
23
+ - cosine_ap
24
+ - dot_accuracy
25
+ - dot_accuracy_threshold
26
+ - dot_f1
27
+ - dot_f1_threshold
28
+ - dot_precision
29
+ - dot_recall
30
+ - dot_ap
31
+ - manhattan_accuracy
32
+ - manhattan_accuracy_threshold
33
+ - manhattan_f1
34
+ - manhattan_f1_threshold
35
+ - manhattan_precision
36
+ - manhattan_recall
37
+ - manhattan_ap
38
+ - euclidean_accuracy
39
+ - euclidean_accuracy_threshold
40
+ - euclidean_f1
41
+ - euclidean_f1_threshold
42
+ - euclidean_precision
43
+ - euclidean_recall
44
+ - euclidean_ap
45
+ - max_accuracy
46
+ - max_accuracy_threshold
47
+ - max_f1
48
+ - max_f1_threshold
49
+ - max_precision
50
+ - max_recall
51
+ - max_ap
52
+ widget:
53
+ - source_sentence: A person in a red shirt is mowing the grass with a green riding
54
+ mower.
55
+ sentences:
56
+ - A person in red is moving grass on a John Deer motor.
57
+ - An angry military veteran watches as people protest the war.
58
+ - A man is sitting on a truck.
59
+ - source_sentence: Some dogs are running on a deserted beach.
60
+ sentences:
61
+ - daddy taught her
62
+ - There are multiple dogs present.
63
+ - a woman at a beach
64
+ - source_sentence: Two street people and a dog sitting on the ground and one is holding
65
+ an "out of luck" sign.
66
+ sentences:
67
+ - A person biking.
68
+ - The man and woman are married.
69
+ - the dog is a chihuahua
70
+ - source_sentence: One tan girl with a wool hat is running and leaning over an object,
71
+ while another person in a wool hat is sitting on the ground.
72
+ sentences:
73
+ - A tan girl runs leans over an object
74
+ - A man and his daughter are petting a pony.
75
+ - A man with a baby is petting a pony.
76
+ - source_sentence: These girls are having a great time looking for seashells.
77
+ sentences:
78
+ - The girls are happy.
79
+ - Two woman are trying to finish orders from a doctor
80
+ - A girl is standing outside.
81
+ pipeline_tag: sentence-similarity
82
+ model-index:
83
+ - name: SentenceTransformer based on microsoft/deberta-v3-small
84
+ results:
85
+ - task:
86
+ type: binary-classification
87
+ name: Binary Classification
88
+ dataset:
89
+ name: Unknown
90
+ type: unknown
91
+ metrics:
92
+ - type: cosine_accuracy
93
+ value: 0.6652580742529429
94
+ name: Cosine Accuracy
95
+ - type: cosine_accuracy_threshold
96
+ value: 0.6691544055938721
97
+ name: Cosine Accuracy Threshold
98
+ - type: cosine_f1
99
+ value: 0.7050935184095989
100
+ name: Cosine F1
101
+ - type: cosine_f1_threshold
102
+ value: 0.5757889747619629
103
+ name: Cosine F1 Threshold
104
+ - type: cosine_precision
105
+ value: 0.5903092377388222
106
+ name: Cosine Precision
107
+ - type: cosine_recall
108
+ value: 0.8752920560747663
109
+ name: Cosine Recall
110
+ - type: cosine_ap
111
+ value: 0.7023886827641951
112
+ name: Cosine Ap
113
+ - type: dot_accuracy
114
+ value: 0.6308481738605494
115
+ name: Dot Accuracy
116
+ - type: dot_accuracy_threshold
117
+ value: 127.05267333984375
118
+ name: Dot Accuracy Threshold
119
+ - type: dot_f1
120
+ value: 0.6983614124163396
121
+ name: Dot F1
122
+ - type: dot_f1_threshold
123
+ value: 101.77250671386719
124
+ name: Dot F1 Threshold
125
+ - type: dot_precision
126
+ value: 0.5772605875619993
127
+ name: Dot Precision
128
+ - type: dot_recall
129
+ value: 0.8837616822429907
130
+ name: Dot Recall
131
+ - type: dot_ap
132
+ value: 0.6558335483108544
133
+ name: Dot Ap
134
+ - type: manhattan_accuracy
135
+ value: 0.6675218834892847
136
+ name: Manhattan Accuracy
137
+ - type: manhattan_accuracy_threshold
138
+ value: 210.99388122558594
139
+ name: Manhattan Accuracy Threshold
140
+ - type: manhattan_f1
141
+ value: 0.7107997100748973
142
+ name: Manhattan F1
143
+ - type: manhattan_f1_threshold
144
+ value: 252.65306091308594
145
+ name: Manhattan F1 Threshold
146
+ - type: manhattan_precision
147
+ value: 0.6060980634528225
148
+ name: Manhattan Precision
149
+ - type: manhattan_recall
150
+ value: 0.8592289719626168
151
+ name: Manhattan Recall
152
+ - type: manhattan_ap
153
+ value: 0.709424985473672
154
+ name: Manhattan Ap
155
+ - type: euclidean_accuracy
156
+ value: 0.6619378207063085
157
+ name: Euclidean Accuracy
158
+ - type: euclidean_accuracy_threshold
159
+ value: 11.227606773376465
160
+ name: Euclidean Accuracy Threshold
161
+ - type: euclidean_f1
162
+ value: 0.7073199115559177
163
+ name: Euclidean F1
164
+ - type: euclidean_f1_threshold
165
+ value: 12.850802421569824
166
+ name: Euclidean F1 Threshold
167
+ - type: euclidean_precision
168
+ value: 0.587928032501451
169
+ name: Euclidean Precision
170
+ - type: euclidean_recall
171
+ value: 0.8875584112149533
172
+ name: Euclidean Recall
173
+ - type: euclidean_ap
174
+ value: 0.7037559902823934
175
+ name: Euclidean Ap
176
+ - type: max_accuracy
177
+ value: 0.6675218834892847
178
+ name: Max Accuracy
179
+ - type: max_accuracy_threshold
180
+ value: 210.99388122558594
181
+ name: Max Accuracy Threshold
182
+ - type: max_f1
183
+ value: 0.7107997100748973
184
+ name: Max F1
185
+ - type: max_f1_threshold
186
+ value: 252.65306091308594
187
+ name: Max F1 Threshold
188
+ - type: max_precision
189
+ value: 0.6060980634528225
190
+ name: Max Precision
191
+ - type: max_recall
192
+ value: 0.8875584112149533
193
+ name: Max Recall
194
+ - type: max_ap
195
+ value: 0.709424985473672
196
+ name: Max Ap
197
+ ---
198
+
199
+ # SentenceTransformer based on microsoft/deberta-v3-small
200
+
201
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
202
+
203
+ ## Model Details
204
+
205
+ ### Model Description
206
+ - **Model Type:** Sentence Transformer
207
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
208
+ - **Maximum Sequence Length:** 512 tokens
209
+ - **Output Dimensionality:** 768 tokens
210
+ - **Similarity Function:** Cosine Similarity
211
+ - **Training Dataset:**
212
+ - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
213
+ - **Language:** en
214
+ <!-- - **License:** Unknown -->
215
+
216
+ ### Model Sources
217
+
218
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
219
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
220
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
221
+
222
+ ### Full Model Architecture
223
+
224
+ ```
225
+ SentenceTransformer(
226
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
227
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
228
+ )
229
+ ```
230
+
231
+ ## Usage
232
+
233
+ ### Direct Usage (Sentence Transformers)
234
+
235
+ First install the Sentence Transformers library:
236
+
237
+ ```bash
238
+ pip install -U sentence-transformers
239
+ ```
240
+
241
+ Then you can load this model and run inference.
242
+ ```python
243
+ from sentence_transformers import SentenceTransformer
244
+
245
+ # Download from the 🤗 Hub
246
+ model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2")
247
+ # Run inference
248
+ sentences = [
249
+ 'These girls are having a great time looking for seashells.',
250
+ 'The girls are happy.',
251
+ 'A girl is standing outside.',
252
+ ]
253
+ embeddings = model.encode(sentences)
254
+ print(embeddings.shape)
255
+ # [3, 768]
256
+
257
+ # Get the similarity scores for the embeddings
258
+ similarities = model.similarity(embeddings, embeddings)
259
+ print(similarities.shape)
260
+ # [3, 3]
261
+ ```
262
+
263
+ <!--
264
+ ### Direct Usage (Transformers)
265
+
266
+ <details><summary>Click to see the direct usage in Transformers</summary>
267
+
268
+ </details>
269
+ -->
270
+
271
+ <!--
272
+ ### Downstream Usage (Sentence Transformers)
273
+
274
+ You can finetune this model on your own dataset.
275
+
276
+ <details><summary>Click to expand</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Out-of-Scope Use
283
+
284
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
285
+ -->
286
+
287
+ ## Evaluation
288
+
289
+ ### Metrics
290
+
291
+ #### Binary Classification
292
+
293
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
294
+
295
+ | Metric | Value |
296
+ |:-----------------------------|:-----------|
297
+ | cosine_accuracy | 0.6653 |
298
+ | cosine_accuracy_threshold | 0.6692 |
299
+ | cosine_f1 | 0.7051 |
300
+ | cosine_f1_threshold | 0.5758 |
301
+ | cosine_precision | 0.5903 |
302
+ | cosine_recall | 0.8753 |
303
+ | cosine_ap | 0.7024 |
304
+ | dot_accuracy | 0.6308 |
305
+ | dot_accuracy_threshold | 127.0527 |
306
+ | dot_f1 | 0.6984 |
307
+ | dot_f1_threshold | 101.7725 |
308
+ | dot_precision | 0.5773 |
309
+ | dot_recall | 0.8838 |
310
+ | dot_ap | 0.6558 |
311
+ | manhattan_accuracy | 0.6675 |
312
+ | manhattan_accuracy_threshold | 210.9939 |
313
+ | manhattan_f1 | 0.7108 |
314
+ | manhattan_f1_threshold | 252.6531 |
315
+ | manhattan_precision | 0.6061 |
316
+ | manhattan_recall | 0.8592 |
317
+ | manhattan_ap | 0.7094 |
318
+ | euclidean_accuracy | 0.6619 |
319
+ | euclidean_accuracy_threshold | 11.2276 |
320
+ | euclidean_f1 | 0.7073 |
321
+ | euclidean_f1_threshold | 12.8508 |
322
+ | euclidean_precision | 0.5879 |
323
+ | euclidean_recall | 0.8876 |
324
+ | euclidean_ap | 0.7038 |
325
+ | max_accuracy | 0.6675 |
326
+ | max_accuracy_threshold | 210.9939 |
327
+ | max_f1 | 0.7108 |
328
+ | max_f1_threshold | 252.6531 |
329
+ | max_precision | 0.6061 |
330
+ | max_recall | 0.8876 |
331
+ | **max_ap** | **0.7094** |
332
+
333
+ <!--
334
+ ## Bias, Risks and Limitations
335
+
336
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
337
+ -->
338
+
339
+ <!--
340
+ ### Recommendations
341
+
342
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
343
+ -->
344
+
345
+ ## Training Details
346
+
347
+ ### Training Dataset
348
+
349
+ #### stanfordnlp/snli
350
+
351
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
352
+ * Size: 67,190 training samples
353
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
354
+ * Approximate statistics based on the first 1000 samples:
355
+ | | sentence1 | sentence2 | label |
356
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
357
+ | type | string | string | int |
358
+ | details | <ul><li>min: 4 tokens</li><li>mean: 21.19 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.77 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
359
+ * Samples:
360
+ | sentence1 | sentence2 | label |
361
+ |:---------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------|
362
+ | <code>Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.</code> | <code>It is necessary to use a controlled method to ensure the treatments are worthwhile.</code> | <code>0</code> |
363
+ | <code>It was conducted in silence.</code> | <code>It was done silently.</code> | <code>0</code> |
364
+ | <code>oh Lewisville any decent food in your cafeteria up there</code> | <code>Is there any decent food in your cafeteria up there in Lewisville?</code> | <code>0</code> |
365
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
366
+ ```json
367
+ {
368
+ "loss": "MultipleNegativesRankingLoss",
369
+ "n_layers_per_step": 3,
370
+ "last_layer_weight": 1,
371
+ "prior_layers_weight": 0.3,
372
+ "kl_div_weight": 1,
373
+ "kl_temperature": 1
374
+ }
375
+ ```
376
+
377
+ ### Evaluation Dataset
378
+
379
+ #### stanfordnlp/snli
380
+
381
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
382
+ * Size: 6,626 evaluation samples
383
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
384
+ * Approximate statistics based on the first 1000 samples:
385
+ | | premise | hypothesis | label |
386
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
387
+ | type | string | string | int |
388
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
389
+ * Samples:
390
+ | premise | hypothesis | label |
391
+ |:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------|
392
+ | <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> |
393
+ | <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> |
394
+ | <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> |
395
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
396
+ ```json
397
+ {
398
+ "loss": "MultipleNegativesRankingLoss",
399
+ "n_layers_per_step": 3,
400
+ "last_layer_weight": 1,
401
+ "prior_layers_weight": 0.3,
402
+ "kl_div_weight": 1,
403
+ "kl_temperature": 1
404
+ }
405
+ ```
406
+
407
+ ### Training Hyperparameters
408
+ #### Non-Default Hyperparameters
409
+
410
+ - `eval_strategy`: steps
411
+ - `per_device_train_batch_size`: 45
412
+ - `per_device_eval_batch_size`: 22
413
+ - `learning_rate`: 3e-06
414
+ - `weight_decay`: 1e-09
415
+ - `num_train_epochs`: 2
416
+ - `lr_scheduler_type`: cosine
417
+ - `warmup_ratio`: 0.5
418
+ - `save_safetensors`: False
419
+ - `fp16`: True
420
+ - `push_to_hub`: True
421
+ - `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
422
+ - `hub_strategy`: checkpoint
423
+ - `batch_sampler`: no_duplicates
424
+
425
+ #### All Hyperparameters
426
+ <details><summary>Click to expand</summary>
427
+
428
+ - `overwrite_output_dir`: False
429
+ - `do_predict`: False
430
+ - `eval_strategy`: steps
431
+ - `prediction_loss_only`: True
432
+ - `per_device_train_batch_size`: 45
433
+ - `per_device_eval_batch_size`: 22
434
+ - `per_gpu_train_batch_size`: None
435
+ - `per_gpu_eval_batch_size`: None
436
+ - `gradient_accumulation_steps`: 1
437
+ - `eval_accumulation_steps`: None
438
+ - `learning_rate`: 3e-06
439
+ - `weight_decay`: 1e-09
440
+ - `adam_beta1`: 0.9
441
+ - `adam_beta2`: 0.999
442
+ - `adam_epsilon`: 1e-08
443
+ - `max_grad_norm`: 1.0
444
+ - `num_train_epochs`: 2
445
+ - `max_steps`: -1
446
+ - `lr_scheduler_type`: cosine
447
+ - `lr_scheduler_kwargs`: {}
448
+ - `warmup_ratio`: 0.5
449
+ - `warmup_steps`: 0
450
+ - `log_level`: passive
451
+ - `log_level_replica`: warning
452
+ - `log_on_each_node`: True
453
+ - `logging_nan_inf_filter`: True
454
+ - `save_safetensors`: False
455
+ - `save_on_each_node`: False
456
+ - `save_only_model`: False
457
+ - `restore_callback_states_from_checkpoint`: False
458
+ - `no_cuda`: False
459
+ - `use_cpu`: False
460
+ - `use_mps_device`: False
461
+ - `seed`: 42
462
+ - `data_seed`: None
463
+ - `jit_mode_eval`: False
464
+ - `use_ipex`: False
465
+ - `bf16`: False
466
+ - `fp16`: True
467
+ - `fp16_opt_level`: O1
468
+ - `half_precision_backend`: auto
469
+ - `bf16_full_eval`: False
470
+ - `fp16_full_eval`: False
471
+ - `tf32`: None
472
+ - `local_rank`: 0
473
+ - `ddp_backend`: None
474
+ - `tpu_num_cores`: None
475
+ - `tpu_metrics_debug`: False
476
+ - `debug`: []
477
+ - `dataloader_drop_last`: False
478
+ - `dataloader_num_workers`: 0
479
+ - `dataloader_prefetch_factor`: None
480
+ - `past_index`: -1
481
+ - `disable_tqdm`: False
482
+ - `remove_unused_columns`: True
483
+ - `label_names`: None
484
+ - `load_best_model_at_end`: False
485
+ - `ignore_data_skip`: False
486
+ - `fsdp`: []
487
+ - `fsdp_min_num_params`: 0
488
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
489
+ - `fsdp_transformer_layer_cls_to_wrap`: None
490
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
491
+ - `deepspeed`: None
492
+ - `label_smoothing_factor`: 0.0
493
+ - `optim`: adamw_torch
494
+ - `optim_args`: None
495
+ - `adafactor`: False
496
+ - `group_by_length`: False
497
+ - `length_column_name`: length
498
+ - `ddp_find_unused_parameters`: None
499
+ - `ddp_bucket_cap_mb`: None
500
+ - `ddp_broadcast_buffers`: False
501
+ - `dataloader_pin_memory`: True
502
+ - `dataloader_persistent_workers`: False
503
+ - `skip_memory_metrics`: True
504
+ - `use_legacy_prediction_loop`: False
505
+ - `push_to_hub`: True
506
+ - `resume_from_checkpoint`: None
507
+ - `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
508
+ - `hub_strategy`: checkpoint
509
+ - `hub_private_repo`: False
510
+ - `hub_always_push`: False
511
+ - `gradient_checkpointing`: False
512
+ - `gradient_checkpointing_kwargs`: None
513
+ - `include_inputs_for_metrics`: False
514
+ - `eval_do_concat_batches`: True
515
+ - `fp16_backend`: auto
516
+ - `push_to_hub_model_id`: None
517
+ - `push_to_hub_organization`: None
518
+ - `mp_parameters`:
519
+ - `auto_find_batch_size`: False
520
+ - `full_determinism`: False
521
+ - `torchdynamo`: None
522
+ - `ray_scope`: last
523
+ - `ddp_timeout`: 1800
524
+ - `torch_compile`: False
525
+ - `torch_compile_backend`: None
526
+ - `torch_compile_mode`: None
527
+ - `dispatch_batches`: None
528
+ - `split_batches`: None
529
+ - `include_tokens_per_second`: False
530
+ - `include_num_input_tokens_seen`: False
531
+ - `neftune_noise_alpha`: None
532
+ - `optim_target_modules`: None
533
+ - `batch_eval_metrics`: False
534
+ - `batch_sampler`: no_duplicates
535
+ - `multi_dataset_batch_sampler`: proportional
536
+
537
+ </details>
538
+
539
+ ### Training Logs
540
+ | Epoch | Step | Training Loss | loss | max_ap |
541
+ |:------:|:----:|:-------------:|:------:|:------:|
542
+ | 0.1004 | 150 | 4.9809 | - | - |
543
+ | 0.2001 | 299 | - | 3.8956 | 0.6130 |
544
+ | 0.2008 | 300 | 3.8459 | - | - |
545
+ | 0.3012 | 450 | 3.1941 | - | - |
546
+ | 0.4003 | 598 | - | 3.2066 | 0.6526 |
547
+ | 0.4016 | 600 | 2.7939 | - | - |
548
+ | 0.5020 | 750 | 2.3082 | - | - |
549
+ | 0.6004 | 897 | - | 2.4595 | 0.6884 |
550
+ | 0.6024 | 900 | 1.9658 | - | - |
551
+ | 0.7028 | 1050 | 1.6975 | - | - |
552
+ | 0.8005 | 1196 | - | 2.0292 | 0.7010 |
553
+ | 0.8032 | 1200 | 1.528 | - | - |
554
+ | 0.9036 | 1350 | 1.3763 | - | - |
555
+ | 1.0007 | 1495 | - | 1.8192 | 0.7071 |
556
+ | 1.0040 | 1500 | 1.262 | - | - |
557
+ | 1.1044 | 1650 | 1.2033 | - | - |
558
+ | 1.2008 | 1794 | - | 1.6673 | 0.7082 |
559
+ | 1.2048 | 1800 | 1.1221 | - | - |
560
+ | 1.3052 | 1950 | 1.0963 | - | - |
561
+ | 1.4009 | 2093 | - | 1.5816 | 0.7103 |
562
+ | 1.4056 | 2100 | 1.0742 | - | - |
563
+ | 1.5060 | 2250 | 1.0242 | - | - |
564
+ | 1.6011 | 2392 | - | 1.5368 | 0.7094 |
565
+ | 1.6064 | 2400 | 1.0036 | - | - |
566
+ | 1.7068 | 2550 | 1.0143 | - | - |
567
+ | 1.8012 | 2691 | - | 1.5158 | 0.7094 |
568
+ | 1.8072 | 2700 | 0.9799 | - | - |
569
+ | 1.9076 | 2850 | 0.9777 | - | - |
570
+
571
+
572
+ ### Framework Versions
573
+ - Python: 3.10.13
574
+ - Sentence Transformers: 3.0.1
575
+ - Transformers: 4.41.2
576
+ - PyTorch: 2.1.2
577
+ - Accelerate: 0.30.1
578
+ - Datasets: 2.19.2
579
+ - Tokenizers: 0.19.1
580
+
581
+ ## Citation
582
+
583
+ ### BibTeX
584
+
585
+ #### Sentence Transformers
586
+ ```bibtex
587
+ @inproceedings{reimers-2019-sentence-bert,
588
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
589
+ author = "Reimers, Nils and Gurevych, Iryna",
590
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
591
+ month = "11",
592
+ year = "2019",
593
+ publisher = "Association for Computational Linguistics",
594
+ url = "https://arxiv.org/abs/1908.10084",
595
+ }
596
+ ```
597
+
598
+ #### AdaptiveLayerLoss
599
+ ```bibtex
600
+ @misc{li20242d,
601
+ title={2D Matryoshka Sentence Embeddings},
602
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
603
+ year={2024},
604
+ eprint={2402.14776},
605
+ archivePrefix={arXiv},
606
+ primaryClass={cs.CL}
607
+ }
608
+ ```
609
+
610
+ #### MultipleNegativesRankingLoss
611
+ ```bibtex
612
+ @misc{henderson2017efficient,
613
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
614
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
615
+ year={2017},
616
+ eprint={1705.00652},
617
+ archivePrefix={arXiv},
618
+ primaryClass={cs.CL}
619
+ }
620
+ ```
621
+
622
+ <!--
623
+ ## Glossary
624
+
625
+ *Clearly define terms in order to be accessible across audiences.*
626
+ -->
627
+
628
+ <!--
629
+ ## Model Card Authors
630
+
631
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
632
+ -->
633
+
634
+ <!--
635
+ ## Model Card Contact
636
+
637
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
638
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2b18d26f1fe00d7bd7d088682f043bcb36941720f829639540c585efe853d65
3
+ size 565251810
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }