bochen0909 commited on
Commit
6212f7b
1 Parent(s): cf483f7

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1006.82 +/- 316.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d8a23eadeac789884b2f32d5d1308ed9671415b396aaf93b43526030caffd0
3
+ size 129380
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x2af67be229d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x2af67be22a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x2af67be22af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x2af67be22b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x2af67be22c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x2af67be22ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x2af67be22d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x2af67be22dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x2af67be22e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x2af67be22ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x2af67be22f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x2af67be2a040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x2af67be26630>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1690672922406758310,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9nbG9iYWwvaG9tZS91c2Vycy9saXpoZW4vc2NyYXRjaC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9nbG9iYWwvaG9tZS91c2Vycy9saXpoZW4vc2NyYXRjaC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO8R4j986vU+uy6JPjqPd76xZ2W+nfYgQNDeMUAVF7y/6/mSv2C/RD93lgtApI2KwKUvuD/WIma9DYA+wLlmeL4Ai6S/uQJDPvwEGD9QA6a9N2aUP532u79LbeE/szVJvgYLsb/u9fA+h0xAwMAY1z51hlE/p0yJP9fmQ79CTru+0RCJPsYM5b9REHe/guUnPwsPGL8htoA/4hunvav+Lz8p364+Dmbcvz4Wtb5hJ1xAnhKivylGdbyPDn+/kJT/vr5Ohj0g1G5Ax2pgPxn3NUC9FTk/L/0HwIdMQMDAGNc+ikL2Pu4uYL/P+mU/DSLAP+6rlj9UZfc828ZuPxJPxr4SGlG/vOLKvVpmVb/eYLO8iNdiv/hwmT+LEIS/6vitvr7KQD2PPx2+izUSP60stTwgmKa/ahWFO0DZ8r43sV6/Bguxv+718D6+Zqo+wBjXPldMWz+r6nE/2A6/vkct1D9w9yVAbvhuPzcIrT/+Lbk8ae6Rv7JlhT+x/VO/tXNKPlZzPrxyDC5A78Hgv0xsHb7Q7aK/WcnfPS1JwD5ebIW/17Kjv1hCaT+9OzG/flfYvAYLsb/u9fA+h0xAwMAY1z6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABajPGzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXiRePQAAAAB0vui/AAAAAJABxT0AAAAANyjlPwAAAABns229AAAAAGCS8T8AAAAApxUBvAAAAAACYeu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2bYptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGKUjjsAAAAA5Ur6vwAAAAAMpxK8AAAAAGsX9z8AAAAALsoQvQAAAAAQxOM/AAAAAExocD0AAAAA5Lf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKw0njYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/t7y9AAAAAPf06L8AAAAAMMUSPQAAAAD3Y/4/AAAAAKSK3z0AAAAA2TzvPwAAAAD05As9AAAAAHNc5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLVbK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwZgmvAAAAAD/Bdq/AAAAAMP9470AAAAAntXlPwAAAACmtOC8AAAAANWG8D8AAAAAAn7PPQAAAABumdy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWHtJcxCY2MAWyUTegDjAF0lEdArw8ElE7W/nV9lChoBkdAkzPXKbKA8WgHTegDaAhHQK8ThuIhyKh1fZQoaAZHQJTEBz/6wdNoB03oA2gIR0CvGDRDLKV6dX2UKGgGR0CVhB1vl2eQaAdN6ANoCEdArxhLErGzbHV9lChoBkdAk2lfHLida2gHTegDaAhHQK8bn4CZF5R1fZQoaAZHQJckSkIomXxoB03oA2gIR0CvICCaAnUldX2UKGgGR0CX5yPXkHUuaAdN6ANoCEdAryTbcmBvrHV9lChoBkdAlQhTVUdaMmgHTegDaAhHQK8k80kWykd1fZQoaAZHQJZ+IkeIVM5oB03oA2gIR0CvKEfmcOLBdX2UKGgGR0CWCG/5LytnaAdN6ANoCEdAryy6IUJv53V9lChoBkdAlVGmGIsRQWgHTegDaAhHQK8xcFfzBhx1fZQoaAZHQJNsG7YkE9toB03oA2gIR0CvMYfd69kCdX2UKGgGR0CUNvFy7wrlaAdN6ANoCEdArzTaIeo1k3V9lChoBkdAlU888kleGGgHTegDaAhHQK85X6KtPpJ1fZQoaAZHQJCHyeGwiaBoB03oA2gIR0CvPhT8YQ8PdX2UKGgGR0CSabVbRne0aAdN6ANoCEdArz4sKZ2IPHV9lChoBkdAiMHED6nBL2gHTegDaAhHQK9BfLK3d9F1fZQoaAZHQJMMjyrgflpoB03oA2gIR0CvRgxyXD3udX2UKGgGR0CWQis/Y8MeaAdN6ANoCEdAr0q8LDye7XV9lChoBkdAlTZydFvyb2gHTegDaAhHQK9K1LeQ+2V1fZQoaAZHQJV75l8PWhBoB03oA2gIR0CvTiQ0fozOdX2UKGgGR0CWlHflIVdpaAdN6ANoCEdAr1PUBS1ma3V9lChoBkdAjZuBg3Lmp2gHTegDaAhHQK9aJHqeK9B1fZQoaAZHQJJoHaWX1J1oB03oA2gIR0CvWkN+kP+XdX2UKGgGR0CKfoHRCx/vaAdN6ANoCEdAr1868Hv+fnV9lChoBkdAks04D9wWFmgHTegDaAhHQK9lRAIIF/x1fZQoaAZHQI+TcxXXAdpoB03oA2gIR0Cva5dK28ZldX2UKGgGR0CSC9CgK4QSaAdN6ANoCEdAr2u0+u/1x3V9lChoBkdAkl08F6iTMmgHTegDaAhHQK9wM2jO9nN1fZQoaAZHQJELcLfDUExoB03oA2gIR0CvdpG2LHdXdX2UKGgGR0CWnP3kxREXaAdN6ANoCEdAr30R4ptrK3V9lChoBkdAkMeW4uscQ2gHTegDaAhHQK99MwA2hqV1fZQoaAZHQJUd3QXyiEhoB03oA2gIR0Cvga3T/hl2dX2UKGgGR0CVBtgxrSE2aAdN6ANoCEdAr4fI8OkLyHV9lChoBkdAegZUBXCCSWgHTegDaAhHQK+ODTTfBN51fZQoaAZHQJBLlbnoxHpoB03oA2gIR0Cvjixfv4M4dX2UKGgGR0CS1cZEDyOJaAdN6ANoCEdAr5KupyZKF3V9lChoBkdAlA/luvUz9GgHTegDaAhHQK+YvoW56MR1fZQoaAZHQJBcH0163RZoB03oA2gIR0CvnwG9HtngdX2UKGgGR0CVGHjEehf0aAdN6ANoCEdAr58g8lolEHV9lChoBkdAkCpPDxb0OGgHTegDaAhHQK+joQYk3S91fZQoaAZHQJQeLzd1uBNoB03oA2gIR0Cvqav+n62wdX2UKGgGR0CXLALi++M7aAdN6ANoCEdAr7AFE/jbSXV9lChoBkdAlF95Bw++umgHTegDaAhHQK+wI495hSd1fZQoaAZHQJYwXfEXLvFoB03oA2gIR0CvtJclgMMJdX2UKGgGR0CPOfkwvg3taAdN6ANoCEdAr7qbpxFRYXV9lChoBkdAlRIjQeFL4GgHTegDaAhHQK/Aj/XoTwl1fZQoaAZHQJQIOuX/o7poB03oA2gIR0CvwKaEBbOedX2UKGgGR0CROXvnr6ciaAdN6ANoCEdAr8QANG3F1nV9lChoBkdAiMPZ5JK8MGgHTegDaAhHQK/Icxlg+hZ1fZQoaAZHQJHOCeGwiaBoB03oA2gIR0CvzRjhky1vdX2UKGgGR0CRheZJCjUNaAdN6ANoCEdAr80wc/+sHXV9lChoBkdAkQy05IYm9mgHTegDaAhHQK/QjIiC8OF1fZQoaAZHQI3Ld7F85S5oB03oA2gIR0Cv1RYmsvIwdX2UKGgGR0CSvY4HX2/SaAdN6ANoCEdAr9oQaWHDaXV9lChoBkdAk1bkvXbudGgHTegDaAhHQK/aLtiQT251fZQoaAZHQJIuSAkLQX1oB03oA2gIR0Cv3p8nuy/sdX2UKGgGR0CTeltkFwDOaAdN6ANoCEdAr+SXGZNO/XV9lChoBkdAlaM/oV2zOWgHTegDaAhHQK/q0OsDGLl1fZQoaAZHQJUm9senyd5oB03oA2gIR0Cv6u4zabnYdX2UKGgGR0CT8B9YfW+XaAdN6ANoCEdAr+9WBczIm3V9lChoBkdAk4UNz0Yj0WgHTegDaAhHQK/1ROvdM0x1fZQoaAZHQJRk7+T/yXloB03oA2gIR0Cv+4U9yLhrdX2UKGgGR0CUCsC53C9AaAdN6ANoCEdAr/ukNayKN3V9lChoBkdAk8cS6xxDLWgHTegDaAhHQLAACafzz3B1fZQoaAZHQJXq60NSZShoB03oA2gIR0CwAwuJ1q33dX2UKGgGR0CVsb+vhZQpaAdN6ANoCEdAsAYk7uDzy3V9lChoBkdAlG6Cp71Iy2gHTegDaAhHQLAGM9q1w5x1fZQoaAZHQJVSQ2Ifr8loB03oA2gIR0CwCGjn3cpLdX2UKGgGR0CVaj1P3ztkaAdN6ANoCEdAsAtkAksz23V9lChoBkdAmB8fN7jT8mgHTegDaAhHQLAOgmGM4tJ1fZQoaAZHQJZEl0p3HJdoB03oA2gIR0CwDpHB1s+FdX2UKGgGR0CYdK3Ux20RaAdN6ANoCEdAsBDGLjxTbXV9lChoBkdAllweVPepGWgHTegDaAhHQLATvG1hLGt1fZQoaAZHQJAq43cYZVJoB03oA2gIR0CwFuUQ9RrKdX2UKGgGR0CSV7V4oqkNaAdN6ANoCEdAsBb0WVNYbXV9lChoBkdAiKgkal1r7GgHTegDaAhHQLAZJ8BuGbl1fZQoaAZHQE/6wosqaw5oB03oA2gIR0CwHCEnLJS0dX2UKGgGR0CJvZ8Sf16FaAdN6ANoCEdAsB9B+6RQrXV9lChoBkdAcqj8YAKfF2gHTegDaAhHQLAfUP1L8Jl1fZQoaAZHQJGGpWluWKNoB03oA2gIR0CwIYgHVwxWdX2UKGgGR0CV0CAbhm5EaAdN6ANoCEdAsCSDkxREW3V9lChoBkdAk40LtVrAQGgHTegDaAhHQLAnoZ3LV4J1fZQoaAZHQJXATcN6PbRoB03oA2gIR0CwJ7ENFz+4dX2UKGgGR0CXAxZ/0/W2aAdN6ANoCEdAsCnhjVhCt3V9lChoBkdAhYMKujh1kmgHTegDaAhHQLAs2Wz4UN91fZQoaAZHQJDtsq6OHWVoB03oA2gIR0CwL/RXCCSSdX2UKGgGR0CV24BaLXMAaAdN6ANoCEdAsDADsXzlLnV9lChoBkdAlPdLp3X7L2gHTegDaAhHQLAyPeD3/Px1fZQoaAZHQIiAEFlkH2RoB03oA2gIR0CwNT0nXumadX2UKGgGR0CRfvadtl7MaAdN6ANoCEdAsDhhFSbYsnV9lChoBkdAlUM+avzOHGgHTegDaAhHQLA4cGW2PT51fZQoaAZHQJY2K3WnTApoB03oA2gIR0CwOqeWa+ewdX2UKGgGR0CVXoAyEcsEaAdN6ANoCEdAsD2oxREWqXV9lChoBkdAkWx/lZHNHGgHTegDaAhHQLBAypy6tkp1fZQoaAZHQJRq4RsdkrhoB03oA2gIR0CwQNnVbzK+dX2UKGgGR0CR3HQu27WeaAdN6ANoCEdAsEMTMmnfmHV9lChoBkdAkQDRnBciW2gHTegDaAhHQLBGEf5ULlV1fZQoaAZHQJMJOU6gdwNoB03oA2gIR0CwSTG7OE/TdX2UKGgGR0CVBSj8UEgXaAdN6ANoCEdAsElBgYxcmnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373188c7a10ec665f8712e815b77c766b8827a0cba581e9175ecf778a038d272
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e7e90096052e91d758aaed8962ad8f001171e112f5eb4de780f7c02645a2073
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-3.10.0-1160.31.1.el7.x86_64-x86_64-with-glibc2.17 # 1 SMP Tue Jun 15 10:20:52 CDT 2021
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x2af67be229d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x2af67be22a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x2af67be22af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x2af67be22b80>", "_build": "<function ActorCriticPolicy._build at 0x2af67be22c10>", "forward": "<function ActorCriticPolicy.forward at 0x2af67be22ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x2af67be22d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x2af67be22dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x2af67be22e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x2af67be22ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x2af67be22f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x2af67be2a040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x2af67be26630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690672922406758310, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9nbG9iYWwvaG9tZS91c2Vycy9saXpoZW4vc2NyYXRjaC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9nbG9iYWwvaG9tZS91c2Vycy9saXpoZW4vc2NyYXRjaC9taW5pY29uZGEzL2VudnMvaHVnZ2luZ2ZhY2UvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO8R4j986vU+uy6JPjqPd76xZ2W+nfYgQNDeMUAVF7y/6/mSv2C/RD93lgtApI2KwKUvuD/WIma9DYA+wLlmeL4Ai6S/uQJDPvwEGD9QA6a9N2aUP532u79LbeE/szVJvgYLsb/u9fA+h0xAwMAY1z51hlE/p0yJP9fmQ79CTru+0RCJPsYM5b9REHe/guUnPwsPGL8htoA/4hunvav+Lz8p364+Dmbcvz4Wtb5hJ1xAnhKivylGdbyPDn+/kJT/vr5Ohj0g1G5Ax2pgPxn3NUC9FTk/L/0HwIdMQMDAGNc+ikL2Pu4uYL/P+mU/DSLAP+6rlj9UZfc828ZuPxJPxr4SGlG/vOLKvVpmVb/eYLO8iNdiv/hwmT+LEIS/6vitvr7KQD2PPx2+izUSP60stTwgmKa/ahWFO0DZ8r43sV6/Bguxv+718D6+Zqo+wBjXPldMWz+r6nE/2A6/vkct1D9w9yVAbvhuPzcIrT/+Lbk8ae6Rv7JlhT+x/VO/tXNKPlZzPrxyDC5A78Hgv0xsHb7Q7aK/WcnfPS1JwD5ebIW/17Kjv1hCaT+9OzG/flfYvAYLsb/u9fA+h0xAwMAY1z6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABajPGzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXiRePQAAAAB0vui/AAAAAJABxT0AAAAANyjlPwAAAABns229AAAAAGCS8T8AAAAApxUBvAAAAAACYeu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2bYptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGKUjjsAAAAA5Ur6vwAAAAAMpxK8AAAAAGsX9z8AAAAALsoQvQAAAAAQxOM/AAAAAExocD0AAAAA5Lf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKw0njYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/t7y9AAAAAPf06L8AAAAAMMUSPQAAAAD3Y/4/AAAAAKSK3z0AAAAA2TzvPwAAAAD05As9AAAAAHNc5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABLVbK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwZgmvAAAAAD/Bdq/AAAAAMP9470AAAAAntXlPwAAAACmtOC8AAAAANWG8D8AAAAAAn7PPQAAAABumdy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWHtJcxCY2MAWyUTegDjAF0lEdArw8ElE7W/nV9lChoBkdAkzPXKbKA8WgHTegDaAhHQK8ThuIhyKh1fZQoaAZHQJTEBz/6wdNoB03oA2gIR0CvGDRDLKV6dX2UKGgGR0CVhB1vl2eQaAdN6ANoCEdArxhLErGzbHV9lChoBkdAk2lfHLida2gHTegDaAhHQK8bn4CZF5R1fZQoaAZHQJckSkIomXxoB03oA2gIR0CvICCaAnUldX2UKGgGR0CX5yPXkHUuaAdN6ANoCEdAryTbcmBvrHV9lChoBkdAlQhTVUdaMmgHTegDaAhHQK8k80kWykd1fZQoaAZHQJZ+IkeIVM5oB03oA2gIR0CvKEfmcOLBdX2UKGgGR0CWCG/5LytnaAdN6ANoCEdAryy6IUJv53V9lChoBkdAlVGmGIsRQWgHTegDaAhHQK8xcFfzBhx1fZQoaAZHQJNsG7YkE9toB03oA2gIR0CvMYfd69kCdX2UKGgGR0CUNvFy7wrlaAdN6ANoCEdArzTaIeo1k3V9lChoBkdAlU888kleGGgHTegDaAhHQK85X6KtPpJ1fZQoaAZHQJCHyeGwiaBoB03oA2gIR0CvPhT8YQ8PdX2UKGgGR0CSabVbRne0aAdN6ANoCEdArz4sKZ2IPHV9lChoBkdAiMHED6nBL2gHTegDaAhHQK9BfLK3d9F1fZQoaAZHQJMMjyrgflpoB03oA2gIR0CvRgxyXD3udX2UKGgGR0CWQis/Y8MeaAdN6ANoCEdAr0q8LDye7XV9lChoBkdAlTZydFvyb2gHTegDaAhHQK9K1LeQ+2V1fZQoaAZHQJV75l8PWhBoB03oA2gIR0CvTiQ0fozOdX2UKGgGR0CWlHflIVdpaAdN6ANoCEdAr1PUBS1ma3V9lChoBkdAjZuBg3Lmp2gHTegDaAhHQK9aJHqeK9B1fZQoaAZHQJJoHaWX1J1oB03oA2gIR0CvWkN+kP+XdX2UKGgGR0CKfoHRCx/vaAdN6ANoCEdAr1868Hv+fnV9lChoBkdAks04D9wWFmgHTegDaAhHQK9lRAIIF/x1fZQoaAZHQI+TcxXXAdpoB03oA2gIR0Cva5dK28ZldX2UKGgGR0CSC9CgK4QSaAdN6ANoCEdAr2u0+u/1x3V9lChoBkdAkl08F6iTMmgHTegDaAhHQK9wM2jO9nN1fZQoaAZHQJELcLfDUExoB03oA2gIR0CvdpG2LHdXdX2UKGgGR0CWnP3kxREXaAdN6ANoCEdAr30R4ptrK3V9lChoBkdAkMeW4uscQ2gHTegDaAhHQK99MwA2hqV1fZQoaAZHQJUd3QXyiEhoB03oA2gIR0Cvga3T/hl2dX2UKGgGR0CVBtgxrSE2aAdN6ANoCEdAr4fI8OkLyHV9lChoBkdAegZUBXCCSWgHTegDaAhHQK+ODTTfBN51fZQoaAZHQJBLlbnoxHpoB03oA2gIR0Cvjixfv4M4dX2UKGgGR0CS1cZEDyOJaAdN6ANoCEdAr5KupyZKF3V9lChoBkdAlA/luvUz9GgHTegDaAhHQK+YvoW56MR1fZQoaAZHQJBcH0163RZoB03oA2gIR0CvnwG9HtngdX2UKGgGR0CVGHjEehf0aAdN6ANoCEdAr58g8lolEHV9lChoBkdAkCpPDxb0OGgHTegDaAhHQK+joQYk3S91fZQoaAZHQJQeLzd1uBNoB03oA2gIR0Cvqav+n62wdX2UKGgGR0CXLALi++M7aAdN6ANoCEdAr7AFE/jbSXV9lChoBkdAlF95Bw++umgHTegDaAhHQK+wI495hSd1fZQoaAZHQJYwXfEXLvFoB03oA2gIR0CvtJclgMMJdX2UKGgGR0CPOfkwvg3taAdN6ANoCEdAr7qbpxFRYXV9lChoBkdAlRIjQeFL4GgHTegDaAhHQK/Aj/XoTwl1fZQoaAZHQJQIOuX/o7poB03oA2gIR0CvwKaEBbOedX2UKGgGR0CROXvnr6ciaAdN6ANoCEdAr8QANG3F1nV9lChoBkdAiMPZ5JK8MGgHTegDaAhHQK/Icxlg+hZ1fZQoaAZHQJHOCeGwiaBoB03oA2gIR0CvzRjhky1vdX2UKGgGR0CRheZJCjUNaAdN6ANoCEdAr80wc/+sHXV9lChoBkdAkQy05IYm9mgHTegDaAhHQK/QjIiC8OF1fZQoaAZHQI3Ld7F85S5oB03oA2gIR0Cv1RYmsvIwdX2UKGgGR0CSvY4HX2/SaAdN6ANoCEdAr9oQaWHDaXV9lChoBkdAk1bkvXbudGgHTegDaAhHQK/aLtiQT251fZQoaAZHQJIuSAkLQX1oB03oA2gIR0Cv3p8nuy/sdX2UKGgGR0CTeltkFwDOaAdN6ANoCEdAr+SXGZNO/XV9lChoBkdAlaM/oV2zOWgHTegDaAhHQK/q0OsDGLl1fZQoaAZHQJUm9senyd5oB03oA2gIR0Cv6u4zabnYdX2UKGgGR0CT8B9YfW+XaAdN6ANoCEdAr+9WBczIm3V9lChoBkdAk4UNz0Yj0WgHTegDaAhHQK/1ROvdM0x1fZQoaAZHQJRk7+T/yXloB03oA2gIR0Cv+4U9yLhrdX2UKGgGR0CUCsC53C9AaAdN6ANoCEdAr/ukNayKN3V9lChoBkdAk8cS6xxDLWgHTegDaAhHQLAACafzz3B1fZQoaAZHQJXq60NSZShoB03oA2gIR0CwAwuJ1q33dX2UKGgGR0CVsb+vhZQpaAdN6ANoCEdAsAYk7uDzy3V9lChoBkdAlG6Cp71Iy2gHTegDaAhHQLAGM9q1w5x1fZQoaAZHQJVSQ2Ifr8loB03oA2gIR0CwCGjn3cpLdX2UKGgGR0CVaj1P3ztkaAdN6ANoCEdAsAtkAksz23V9lChoBkdAmB8fN7jT8mgHTegDaAhHQLAOgmGM4tJ1fZQoaAZHQJZEl0p3HJdoB03oA2gIR0CwDpHB1s+FdX2UKGgGR0CYdK3Ux20RaAdN6ANoCEdAsBDGLjxTbXV9lChoBkdAllweVPepGWgHTegDaAhHQLATvG1hLGt1fZQoaAZHQJAq43cYZVJoB03oA2gIR0CwFuUQ9RrKdX2UKGgGR0CSV7V4oqkNaAdN6ANoCEdAsBb0WVNYbXV9lChoBkdAiKgkal1r7GgHTegDaAhHQLAZJ8BuGbl1fZQoaAZHQE/6wosqaw5oB03oA2gIR0CwHCEnLJS0dX2UKGgGR0CJvZ8Sf16FaAdN6ANoCEdAsB9B+6RQrXV9lChoBkdAcqj8YAKfF2gHTegDaAhHQLAfUP1L8Jl1fZQoaAZHQJGGpWluWKNoB03oA2gIR0CwIYgHVwxWdX2UKGgGR0CV0CAbhm5EaAdN6ANoCEdAsCSDkxREW3V9lChoBkdAk40LtVrAQGgHTegDaAhHQLAnoZ3LV4J1fZQoaAZHQJXATcN6PbRoB03oA2gIR0CwJ7ENFz+4dX2UKGgGR0CXAxZ/0/W2aAdN6ANoCEdAsCnhjVhCt3V9lChoBkdAhYMKujh1kmgHTegDaAhHQLAs2Wz4UN91fZQoaAZHQJDtsq6OHWVoB03oA2gIR0CwL/RXCCSSdX2UKGgGR0CV24BaLXMAaAdN6ANoCEdAsDADsXzlLnV9lChoBkdAlPdLp3X7L2gHTegDaAhHQLAyPeD3/Px1fZQoaAZHQIiAEFlkH2RoB03oA2gIR0CwNT0nXumadX2UKGgGR0CRfvadtl7MaAdN6ANoCEdAsDhhFSbYsnV9lChoBkdAlUM+avzOHGgHTegDaAhHQLA4cGW2PT51fZQoaAZHQJY2K3WnTApoB03oA2gIR0CwOqeWa+ewdX2UKGgGR0CVXoAyEcsEaAdN6ANoCEdAsD2oxREWqXV9lChoBkdAkWx/lZHNHGgHTegDaAhHQLBAypy6tkp1fZQoaAZHQJRq4RsdkrhoB03oA2gIR0CwQNnVbzK+dX2UKGgGR0CR3HQu27WeaAdN6ANoCEdAsEMTMmnfmHV9lChoBkdAkQDRnBciW2gHTegDaAhHQLBGEf5ULlV1fZQoaAZHQJMJOU6gdwNoB03oA2gIR0CwSTG7OE/TdX2UKGgGR0CVBSj8UEgXaAdN6ANoCEdAsElBgYxcmnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-3.10.0-1160.31.1.el7.x86_64-x86_64-with-glibc2.17 # 1 SMP Tue Jun 15 10:20:52 CDT 2021", "Python": "3.8.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd71faa092d79c1fb2a259337a3960910f80d1778474283284ebe7f36985c1a7
3
+ size 1066768
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1006.8244906958513, "std_reward": 316.92160053892775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T18:51:17.259543"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ceacacc46624e545d8d160a54f8175b077b83754c2308115e31b5bc4c0ed3c2
3
+ size 2170