|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
from datasets import DatasetDict, load_dataset |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoFeatureExtractor, |
|
AutoModelForAudioClassification, |
|
EvalPrediction, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
from sklearn.metrics import ( |
|
accuracy_score, |
|
average_precision_score, |
|
f1_score, |
|
roc_auc_score, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
require_version( |
|
"datasets>=1.14.0", |
|
"To fix: pip install -r examples/pytorch/audio-classification/requirements.txt", |
|
) |
|
|
|
|
|
class MultiLabelTrainer(Trainer): |
|
def compute_loss(self, model, inputs, return_outputs=False): |
|
labels = inputs.pop("labels") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
bce_loss_fct = torch.nn.BCEWithLogitsLoss() |
|
loss = bce_loss_fct( |
|
logits.view(-1, self.model.config.num_labels), |
|
labels.float().view(-1, self.model.config.num_labels), |
|
) |
|
return (loss, outputs) if return_outputs else loss |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "Name of a dataset from the datasets package"} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the dataset to use (via the datasets library)." |
|
}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "A file containing the training audio paths and labels."}, |
|
) |
|
eval_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "A file containing the validation audio paths and labels."}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": ( |
|
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={ |
|
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'" |
|
}, |
|
) |
|
label_column_name: Optional[str] = field( |
|
default="label", |
|
metadata={ |
|
"help": "The name of the dataset column containing the labels. Defaults to 'label'" |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_length_seconds: float = field( |
|
default=20, |
|
metadata={ |
|
"help": "Audio clips will be randomly cut to this length during training if the value is set." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
default="facebook/wav2vec2-base", |
|
metadata={ |
|
"help": "Path to pretrained model or model identifier from huggingface.co/models" |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Pretrained config name or path if not the same as model_name" |
|
}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Where do you want to store the pretrained models downloaded from the Hub" |
|
}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={ |
|
"help": "The specific model version to use (can be a branch name, tag name or commit id)." |
|
}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, metadata={"help": "Name or path of preprocessor config."} |
|
) |
|
freeze_feature_encoder: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to freeze the feature encoder layers of the model."}, |
|
) |
|
attention_mask: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to generate an attention mask in the feature extractor." |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
freeze_feature_extractor: Optional[bool] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Whether to freeze the feature extractor layers of the model." |
|
}, |
|
) |
|
ignore_mismatched_sizes: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will enable to load a pretrained model whose head dimensions are different." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if not self.freeze_feature_extractor and self.freeze_feature_encoder: |
|
warnings.warn( |
|
"The argument `--freeze_feature_extractor` is deprecated and " |
|
"will be removed in a future version. Use `--freeze_feature_encoder`" |
|
"instead. Setting `freeze_feature_encoder==True`.", |
|
FutureWarning, |
|
) |
|
if self.freeze_feature_extractor and not self.freeze_feature_encoder: |
|
raise ValueError( |
|
"The argument `--freeze_feature_extractor` is deprecated and " |
|
"should not be used in combination with `--freeze_feature_encoder`." |
|
"Only make use of `--freeze_feature_encoder`." |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser( |
|
(ModelArguments, DataTrainingArguments, TrainingArguments) |
|
) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file( |
|
json_file=os.path.abspath(sys.argv[1]) |
|
) |
|
else: |
|
(model_args, data_args, training_args) = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_audio_classification", model_args, data_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
last_checkpoint = None |
|
if ( |
|
os.path.isdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to train from scratch." |
|
) |
|
elif ( |
|
last_checkpoint is not None and training_args.resume_from_checkpoint is None |
|
): |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
raw_datasets = DatasetDict() |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
raw_datasets["eval"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if data_args.audio_column_name not in raw_datasets["train"].column_names: |
|
raise ValueError( |
|
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--audio_column_name` to the correct audio column - one of " |
|
f"{', '.join(raw_datasets['train'].column_names)}." |
|
) |
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
model_args.feature_extractor_name or model_args.model_name_or_path, |
|
return_attention_mask=model_args.attention_mask, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), |
|
) |
|
|
|
model_input_name = feature_extractor.model_input_names[0] |
|
|
|
def preprocess_data(examples): |
|
|
|
audio_arrays = [x["array"] for x in examples[data_args.audio_column_name]] |
|
|
|
inputs = feature_extractor( |
|
audio_arrays, sampling_rate=feature_extractor.sampling_rate |
|
) |
|
|
|
labels_batch = {k: examples[k] for k in examples.keys() if k in labels} |
|
|
|
labels_matrix = np.zeros((len(audio_arrays), len(labels))) |
|
|
|
for idx, label in enumerate(labels): |
|
labels_matrix[:, idx] = labels_batch[label] |
|
|
|
output_batch = {model_input_name: inputs.get(model_input_name)} |
|
output_batch["labels"] = labels_matrix.tolist() |
|
|
|
return output_batch |
|
|
|
def multi_label_metrics(predictions, labels, threshold=0.5): |
|
|
|
sigmoid = torch.nn.Sigmoid() |
|
probs = sigmoid(torch.Tensor(predictions)).cpu().numpy() |
|
|
|
y_pred = np.zeros(probs.shape) |
|
y_pred[np.where(probs >= threshold)] = 1 |
|
|
|
f1_micro_average = f1_score(y_true=labels, y_pred=y_pred, average="micro") |
|
roc_auc = roc_auc_score(labels, y_pred, average="micro") |
|
accuracy = accuracy_score(labels, y_pred) |
|
mAP = average_precision_score(labels, probs, average="micro") |
|
|
|
metrics = { |
|
"f1": f1_micro_average, |
|
"roc_auc": roc_auc, |
|
"accuracy": accuracy, |
|
"mAP": mAP, |
|
} |
|
return metrics |
|
|
|
def compute_metrics(p: EvalPrediction): |
|
"""Computes mean average precision (mAP) score""" |
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions |
|
result = multi_label_metrics(predictions=preds, labels=p.label_ids) |
|
return result |
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name or model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
model = AutoModelForAudioClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, |
|
) |
|
|
|
labels = list(config.id2label.values()) |
|
|
|
|
|
if model_args.freeze_feature_encoder: |
|
model.freeze_feature_encoder() |
|
|
|
if training_args.do_train: |
|
if data_args.max_train_samples is not None: |
|
raw_datasets["train"] = ( |
|
raw_datasets["train"] |
|
.shuffle(seed=training_args.seed) |
|
.select(range(data_args.max_train_samples)) |
|
) |
|
|
|
raw_datasets["train"].set_transform(preprocess_data, output_all_columns=False) |
|
|
|
if training_args.do_eval: |
|
if data_args.max_eval_samples is not None: |
|
raw_datasets["eval"] = ( |
|
raw_datasets["eval"] |
|
.shuffle(seed=training_args.seed) |
|
.select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
raw_datasets["eval"].set_transform(preprocess_data, output_all_columns=False) |
|
|
|
|
|
trainer = MultiLabelTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=raw_datasets["train"] if training_args.do_train else None, |
|
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None, |
|
compute_metrics=compute_metrics, |
|
tokenizer=feature_extractor, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
kwargs = { |
|
"finetuned_from": model_args.model_name_or_path, |
|
"tasks": "audio-classification", |
|
"dataset": data_args.dataset_name, |
|
"tags": ["audio-classification"], |
|
} |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|