File size: 4,920 Bytes
b82f66a 9a835b2 b82f66a 9a835b2 b82f66a 9a835b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
language: id
license: apache-2.0
tags:
- icefall
- phoneme-recognition
- automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_13_0
- indonesian-nlp/librivox-indonesia
- google/fleurs
---
# Pruned Stateless Zipformer RNN-T Streaming ID
Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets:
- [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0)
- [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia)
- [FLEURS ID](https://huggingface.co/datasets/google/fleurs)
Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id).
This model was trained using [icefall](https://github.com/k2-fsa/icefall) framework. All training was done on a Google Cloud Engine VM with a Tesla A100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tensorboard) logged via Tensorboard.
## Evaluation Results
### Simulated Streaming
```sh
for m in greedy_search fast_beam_search modified_beam_search; do
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method $m
done
```
The model achieves the following phoneme error rates on the different test sets:
| Decoding | LibriVox | FLEURS | Common Voice |
| -------------------- | :------: | :----: | :----------: |
| Greedy Search | 4.87% | 11.45% | 14.97% |
| Modified Beam Search | 4.71% | 11.25% | 14.31% |
| Fast Beam Search | 4.85% | 12.55% | 14.89% |
### Chunk-wise Streaming
```sh
for m in greedy_search fast_beam_search modified_beam_search; do
./pruned_transducer_stateless7_streaming/streaming_decode.py \
--epoch 30 \
--avg 9 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--decoding-method $m \
--decode-chunk-len 32 \
--num-decode-streams 1500
done
```
The model achieves the following phoneme error rates on the different test sets:
| Decoding | LibriVox | FLEURS | Common Voice |
| -------------------- | :------: | :----: | :----------: |
| Greedy Search | 5.12% | 12.74% | 15.78% |
| Modified Beam Search | 4.78% | 11.83% | 14.54% |
| Fast Beam Search | 4.81% | 12.93% | 14.96% |
## Usage
### Download Pre-trained Model
```sh
cd egs/bookbot/ASR
mkdir tmp
cd tmp
git lfs install
git clone https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id
```
### Inference
To decode with greedy search, run:
```sh
./pruned_transducer_stateless7_streaming/jit_pretrained.py \
--nn-model-filename ./tmp/pruned-transducer-stateless7-streaming-id/exp/cpu_jit.pt \
--lang-dir ./tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone \
./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav
```
<details>
<summary>Decoding Output</summary>
```
2023-06-21 10:19:18,563 INFO [jit_pretrained.py:217] device: cpu
2023-06-21 10:19:19,231 INFO [lexicon.py:168] Loading pre-compiled tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone/Linv.pt
2023-06-21 10:19:19,232 INFO [jit_pretrained.py:228] Constructing Fbank computer
2023-06-21 10:19:19,233 INFO [jit_pretrained.py:238] Reading sound files: ['./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav']
2023-06-21 10:19:19,234 INFO [jit_pretrained.py:244] Decoding started
2023-06-21 10:19:20,090 INFO [jit_pretrained.py:271]
./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav:
p u l a ŋ | s ə k o l a h | p i t ə r i | s a ŋ a t | l a p a r
2023-06-21 10:19:20,090 INFO [jit_pretrained.py:273] Decoding Done
```
</details>
## Training procedure
### Install icefall
```sh
git clone https://github.com/bookbot-hive/icefall
cd icefall
export PYTHONPATH=`pwd`:$PYTHONPATH
```
### Prepare Data
```sh
cd egs/bookbot_id/ASR
./prepare.sh
```
### Train
```sh
export CUDA_VISIBLE_DEVICES="0"
./pruned_transducer_stateless7_streaming/train.py \
--num-epochs 30 \
--use-fp16 1 \
--max-duration 400
```
## Frameworks
- [k2](https://github.com/k2-fsa/k2)
- [icefall](https://github.com/bookbot-hive/icefall)
- [lhotse](https://github.com/bookbot-hive/lhotse) |