--- base_model: pierreguillou/ner-bert-large-cased-pt-lenerbr tags: - generated_from_trainer datasets: - contratos_tceal metrics: - precision - recall - f1 - accuracy model-index: - name: ner-bert-large-cased-pt-lenerbr-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: contratos_tceal type: contratos_tceal config: contratos_tceal split: validation args: contratos_tceal metrics: - name: Precision type: precision value: 0.7549019607843137 - name: Recall type: recall value: 0.8115313081215128 - name: F1 type: f1 value: 0.7821930086644756 - name: Accuracy type: accuracy value: 0.883160638230246 --- # ner-bert-large-cased-pt-lenerbr-finetuned-ner This model is a fine-tuned version of [pierreguillou/ner-bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) on the contratos_tceal dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.7549 - Recall: 0.8115 - F1: 0.7822 - Accuracy: 0.8832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 91 | nan | 0.6987 | 0.7433 | 0.7203 | 0.8620 | | No log | 2.0 | 182 | nan | 0.7040 | 0.7564 | 0.7292 | 0.8624 | | No log | 3.0 | 273 | nan | 0.7317 | 0.7929 | 0.7611 | 0.8731 | | No log | 4.0 | 364 | nan | 0.7501 | 0.8097 | 0.7788 | 0.8838 | | No log | 5.0 | 455 | nan | 0.7504 | 0.8332 | 0.7897 | 0.8857 | | 0.3495 | 6.0 | 546 | nan | 0.7551 | 0.8103 | 0.7817 | 0.8799 | | 0.3495 | 7.0 | 637 | nan | 0.7533 | 0.8215 | 0.7859 | 0.8824 | | 0.3495 | 8.0 | 728 | nan | 0.7578 | 0.7991 | 0.7779 | 0.8785 | | 0.3495 | 9.0 | 819 | nan | 0.7520 | 0.8196 | 0.7843 | 0.8840 | | 0.3495 | 10.0 | 910 | nan | 0.7549 | 0.8115 | 0.7822 | 0.8832 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0