Update README.md
Browse files
README.md
CHANGED
@@ -48,7 +48,7 @@ Then you can use the model like this:
|
|
48 |
from sentence_transformers import SentenceTransformer
|
49 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
50 |
|
51 |
-
model = SentenceTransformer('
|
52 |
embeddings = model.encode(sentences)
|
53 |
print(embeddings)
|
54 |
```
|
@@ -72,8 +72,8 @@ def mean_pooling(model_output, attention_mask):
|
|
72 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
73 |
|
74 |
# Load model from HuggingFace Hub
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
76 |
-
model = AutoModel.from_pretrained('
|
77 |
|
78 |
# Tokenize sentences
|
79 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -94,7 +94,7 @@ print(sentence_embeddings)
|
|
94 |
|
95 |
## Evaluation Results
|
96 |
|
97 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
98 |
|
99 |
------
|
100 |
|
|
|
48 |
from sentence_transformers import SentenceTransformer
|
49 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
50 |
|
51 |
+
model = SentenceTransformer('brahmairesearch/all-MiniLM-L6-v2')
|
52 |
embeddings = model.encode(sentences)
|
53 |
print(embeddings)
|
54 |
```
|
|
|
72 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
73 |
|
74 |
# Load model from HuggingFace Hub
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained('brahmairesearch/all-MiniLM-L6-v2')
|
76 |
+
model = AutoModel.from_pretrained('brahmairesearch/all-MiniLM-L6-v2')
|
77 |
|
78 |
# Tokenize sentences
|
79 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
94 |
|
95 |
## Evaluation Results
|
96 |
|
97 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=brahmairesearch/all-MiniLM-L6-v2)
|
98 |
|
99 |
------
|
100 |
|