kst23 commited on
Commit
eca1ee1
1 Parent(s): 3f60452

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -48,7 +48,7 @@ Then you can use the model like this:
48
  from sentence_transformers import SentenceTransformer
49
  sentences = ["This is an example sentence", "Each sentence is converted"]
50
 
51
- model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
52
  embeddings = model.encode(sentences)
53
  print(embeddings)
54
  ```
@@ -72,8 +72,8 @@ def mean_pooling(model_output, attention_mask):
72
  sentences = ['This is an example sentence', 'Each sentence is converted']
73
 
74
  # Load model from HuggingFace Hub
75
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
76
- model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
77
 
78
  # Tokenize sentences
79
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -94,7 +94,7 @@ print(sentence_embeddings)
94
 
95
  ## Evaluation Results
96
 
97
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2)
98
 
99
  ------
100
 
 
48
  from sentence_transformers import SentenceTransformer
49
  sentences = ["This is an example sentence", "Each sentence is converted"]
50
 
51
+ model = SentenceTransformer('brahmairesearch/all-MiniLM-L6-v2')
52
  embeddings = model.encode(sentences)
53
  print(embeddings)
54
  ```
 
72
  sentences = ['This is an example sentence', 'Each sentence is converted']
73
 
74
  # Load model from HuggingFace Hub
75
+ tokenizer = AutoTokenizer.from_pretrained('brahmairesearch/all-MiniLM-L6-v2')
76
+ model = AutoModel.from_pretrained('brahmairesearch/all-MiniLM-L6-v2')
77
 
78
  # Tokenize sentences
79
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
94
 
95
  ## Evaluation Results
96
 
97
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=brahmairesearch/all-MiniLM-L6-v2)
98
 
99
  ------
100