--- license: other license_name: bria-2.3 license_link: https://bria.ai/bria-huggingface-model-license-agreement/ inference: false tags: - text-to-image - controlnet model - legal liability - commercial use extra_gated_prompt: This model weights by BRIA AI can be obtained after a commercial license is agreed upon. Fill in the form below and we reach out to you. extra_gated_fields: Name: text Company/Org name: text Org Type (Early/Growth Startup, Enterprise, Academy): text Role: text Country: text Email: text By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox --- # BRIA 2.3 ControlNet Canny Model Card BRIA 2.3 ControlNet-Canny, trained on the foundation of [BRIA 2.3 Text-to-Image](https://huggingface.co/briaai/BRIA-2.3), enables the generation of high-quality images guided by a textual prompt and the extracted edge map from an input image. This allows for the creation of different variations of an image, all sharing the same geometry. [BRIA 2.3](https://huggingface.co/briaai/BRIA-2.3) was trained from scratch exclusively on licensed data from our esteemed data partners. Therefore, they are safe for commercial use and provide full legal liability coverage for copyright and privacy infringement, as well as harmful content mitigation. That is, our dataset does not contain copyrighted materials, such as fictional characters, logos, trademarks, public figures, harmful content, or privacy-infringing content. Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users! ![photo-4426232_collage.png](https://cdn-uploads.huggingface.co/production/uploads/6571c468b622b6c62c1ac4da/VzUtWzN0KdT7B-xoBNEcB.png) ### Model Description - **Developed by:** BRIA AI - **Model type:** [ControlNet](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) for Latent diffusion - **License:** [bria-2.3](https://bria.ai/bria-huggingface-model-license-agreement/) - **Model Description:** ControlNet Canny for BRIA 2.3 Text-to-Image model. The model generates images guided by text and the edge map of the conditioned image. - **Resources for more information:** [BRIA AI](https://bria.ai/) ### Get Access BRIA 2.3 ControlNet-Canny requires access to BRIA 2.3 Text-to-Image. For more information, [click here](https://huggingface.co/briaai/BRIA-2.3). ### Code example using Diffusers ``` pip install diffusers ``` ```py from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline import torch import cv2 import numpy as np from PIL import Image from diffusers.utils import load_image controlnet = ControlNetModel.from_pretrained( "briaai/BRIA-2.3-ControlNet-Canny", torch_dtype=torch.float16 ) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, ) pipe.to("cuda") prompt = "A portrait of a Beautiful and playful ethereal singer, golden designs, highly detailed, blurry background" negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" # Calculate Canny image input_image = load_image( "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" ) input_image = np.array(input_image) low_threshold, high_threshold = 100, 200 input_image = cv2.Canny(input_image, low_threshold, high_threshold) input_image = input_image[:, :, None] input_image = np.concatenate([input_image, input_image, input_image], axis=2) canny_image = Image.fromarray(input_image) image = pipe(prompt=prompt, negative_prompt=negative_prompt, image=canny_image, controlnet_conditioning_scale=1.0, height=1024, width=1024).images[0] ```