Upload 4 files
Browse files- Inference.py +53 -0
- model.pth +3 -0
- models/__init__.py +1 -0
- models/isnet.py +611 -0
Inference.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from skimage import io
|
4 |
+
from glob import glob
|
5 |
+
from tqdm import tqdm
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torchvision.transforms.functional import normalize
|
10 |
+
from models import ISNetDIS
|
11 |
+
|
12 |
+
|
13 |
+
if __name__ == "__main__":
|
14 |
+
dataset_path="input_images" #Your dataset path
|
15 |
+
model_path="model.pth"
|
16 |
+
result_path="output_results" #The folder path that you want to save the results
|
17 |
+
|
18 |
+
if not os.path.exists(result_path):
|
19 |
+
os.makedirs(result_path)
|
20 |
+
|
21 |
+
input_size=[1024,1024]
|
22 |
+
net=ISNetDIS()
|
23 |
+
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
net.load_state_dict(torch.load(model_path))
|
26 |
+
net=net.cuda()
|
27 |
+
else:
|
28 |
+
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
29 |
+
net.eval()
|
30 |
+
|
31 |
+
im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF")
|
32 |
+
with torch.no_grad():
|
33 |
+
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
|
34 |
+
print("im_path: ", im_path)
|
35 |
+
im = io.imread(im_path)
|
36 |
+
if len(im.shape) < 3:
|
37 |
+
im = im[:, :, np.newaxis]
|
38 |
+
im_shp=im.shape[0:2]
|
39 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
40 |
+
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8)
|
41 |
+
image = torch.divide(im_tensor,255.0)
|
42 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
43 |
+
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
image=image.cuda()
|
46 |
+
|
47 |
+
result=net(image)
|
48 |
+
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
|
49 |
+
ma = torch.max(result)
|
50 |
+
mi = torch.min(result)
|
51 |
+
result = (result-mi)/(ma-mi)
|
52 |
+
im_name=im_path.split('/')[-1].split('.')[0]
|
53 |
+
cv2.imwrite(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))
|
model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5430b981f840e234755e88cb32f29ccd2f71ae869217a989c98b38b3e1f9e586
|
3 |
+
size 176720018
|
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from models.isnet import ISNetGTEncoder, ISNetDIS
|
models/isnet.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
bce_loss = nn.BCELoss(size_average=True)
|
8 |
+
def muti_loss_fusion(preds, target):
|
9 |
+
loss0 = 0.0
|
10 |
+
loss = 0.0
|
11 |
+
|
12 |
+
for i in range(0,len(preds)):
|
13 |
+
# print("i: ", i, preds[i].shape)
|
14 |
+
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
15 |
+
# tmp_target = _upsample_like(target,preds[i])
|
16 |
+
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
17 |
+
loss = loss + bce_loss(preds[i],tmp_target)
|
18 |
+
else:
|
19 |
+
loss = loss + bce_loss(preds[i],target)
|
20 |
+
if(i==0):
|
21 |
+
loss0 = loss
|
22 |
+
return loss0, loss
|
23 |
+
|
24 |
+
fea_loss = nn.MSELoss(size_average=True)
|
25 |
+
kl_loss = nn.KLDivLoss(size_average=True)
|
26 |
+
l1_loss = nn.L1Loss(size_average=True)
|
27 |
+
smooth_l1_loss = nn.SmoothL1Loss(size_average=True)
|
28 |
+
def muti_loss_fusion_kl(preds, target, dfs, fs, mode='MSE'):
|
29 |
+
loss0 = 0.0
|
30 |
+
loss = 0.0
|
31 |
+
|
32 |
+
for i in range(0,len(preds)):
|
33 |
+
# print("i: ", i, preds[i].shape)
|
34 |
+
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
35 |
+
# tmp_target = _upsample_like(target,preds[i])
|
36 |
+
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
37 |
+
loss = loss + bce_loss(preds[i],tmp_target)
|
38 |
+
else:
|
39 |
+
loss = loss + bce_loss(preds[i],target)
|
40 |
+
if(i==0):
|
41 |
+
loss0 = loss
|
42 |
+
|
43 |
+
for i in range(0,len(dfs)):
|
44 |
+
if(mode=='MSE'):
|
45 |
+
loss = loss + fea_loss(dfs[i],fs[i]) ### add the mse loss of features as additional constraints
|
46 |
+
# print("fea_loss: ", fea_loss(dfs[i],fs[i]).item())
|
47 |
+
elif(mode=='KL'):
|
48 |
+
loss = loss + kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1))
|
49 |
+
# print("kl_loss: ", kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)).item())
|
50 |
+
elif(mode=='MAE'):
|
51 |
+
loss = loss + l1_loss(dfs[i],fs[i])
|
52 |
+
# print("ls_loss: ", l1_loss(dfs[i],fs[i]))
|
53 |
+
elif(mode=='SmoothL1'):
|
54 |
+
loss = loss + smooth_l1_loss(dfs[i],fs[i])
|
55 |
+
# print("SmoothL1: ", smooth_l1_loss(dfs[i],fs[i]).item())
|
56 |
+
|
57 |
+
return loss0, loss
|
58 |
+
|
59 |
+
class REBNCONV(nn.Module):
|
60 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
61 |
+
super(REBNCONV,self).__init__()
|
62 |
+
|
63 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
64 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
65 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
66 |
+
|
67 |
+
def forward(self,x):
|
68 |
+
|
69 |
+
hx = x
|
70 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
71 |
+
|
72 |
+
return xout
|
73 |
+
|
74 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
75 |
+
def _upsample_like(src,tar):
|
76 |
+
|
77 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
78 |
+
|
79 |
+
return src
|
80 |
+
|
81 |
+
|
82 |
+
### RSU-7 ###
|
83 |
+
class RSU7(nn.Module):
|
84 |
+
|
85 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
86 |
+
super(RSU7,self).__init__()
|
87 |
+
|
88 |
+
self.in_ch = in_ch
|
89 |
+
self.mid_ch = mid_ch
|
90 |
+
self.out_ch = out_ch
|
91 |
+
|
92 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
93 |
+
|
94 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
95 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
96 |
+
|
97 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
98 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
99 |
+
|
100 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
101 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
102 |
+
|
103 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
104 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
105 |
+
|
106 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
107 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
108 |
+
|
109 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
110 |
+
|
111 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
112 |
+
|
113 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
114 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
115 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
116 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
117 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
118 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
119 |
+
|
120 |
+
def forward(self,x):
|
121 |
+
b, c, h, w = x.shape
|
122 |
+
|
123 |
+
hx = x
|
124 |
+
hxin = self.rebnconvin(hx)
|
125 |
+
|
126 |
+
hx1 = self.rebnconv1(hxin)
|
127 |
+
hx = self.pool1(hx1)
|
128 |
+
|
129 |
+
hx2 = self.rebnconv2(hx)
|
130 |
+
hx = self.pool2(hx2)
|
131 |
+
|
132 |
+
hx3 = self.rebnconv3(hx)
|
133 |
+
hx = self.pool3(hx3)
|
134 |
+
|
135 |
+
hx4 = self.rebnconv4(hx)
|
136 |
+
hx = self.pool4(hx4)
|
137 |
+
|
138 |
+
hx5 = self.rebnconv5(hx)
|
139 |
+
hx = self.pool5(hx5)
|
140 |
+
|
141 |
+
hx6 = self.rebnconv6(hx)
|
142 |
+
|
143 |
+
hx7 = self.rebnconv7(hx6)
|
144 |
+
|
145 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
146 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
147 |
+
|
148 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
149 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
150 |
+
|
151 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
152 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
153 |
+
|
154 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
155 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
156 |
+
|
157 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
158 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
159 |
+
|
160 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
161 |
+
|
162 |
+
return hx1d + hxin
|
163 |
+
|
164 |
+
|
165 |
+
### RSU-6 ###
|
166 |
+
class RSU6(nn.Module):
|
167 |
+
|
168 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
169 |
+
super(RSU6,self).__init__()
|
170 |
+
|
171 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
172 |
+
|
173 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
174 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
175 |
+
|
176 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
177 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
178 |
+
|
179 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
180 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
181 |
+
|
182 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
183 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
+
|
185 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
+
|
187 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
188 |
+
|
189 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
190 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
191 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
192 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
193 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
194 |
+
|
195 |
+
def forward(self,x):
|
196 |
+
|
197 |
+
hx = x
|
198 |
+
|
199 |
+
hxin = self.rebnconvin(hx)
|
200 |
+
|
201 |
+
hx1 = self.rebnconv1(hxin)
|
202 |
+
hx = self.pool1(hx1)
|
203 |
+
|
204 |
+
hx2 = self.rebnconv2(hx)
|
205 |
+
hx = self.pool2(hx2)
|
206 |
+
|
207 |
+
hx3 = self.rebnconv3(hx)
|
208 |
+
hx = self.pool3(hx3)
|
209 |
+
|
210 |
+
hx4 = self.rebnconv4(hx)
|
211 |
+
hx = self.pool4(hx4)
|
212 |
+
|
213 |
+
hx5 = self.rebnconv5(hx)
|
214 |
+
|
215 |
+
hx6 = self.rebnconv6(hx5)
|
216 |
+
|
217 |
+
|
218 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
219 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
220 |
+
|
221 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
222 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
223 |
+
|
224 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
225 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
226 |
+
|
227 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
228 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
229 |
+
|
230 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
231 |
+
|
232 |
+
return hx1d + hxin
|
233 |
+
|
234 |
+
### RSU-5 ###
|
235 |
+
class RSU5(nn.Module):
|
236 |
+
|
237 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
238 |
+
super(RSU5,self).__init__()
|
239 |
+
|
240 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
241 |
+
|
242 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
243 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
244 |
+
|
245 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
246 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
247 |
+
|
248 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
249 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
250 |
+
|
251 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
252 |
+
|
253 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
254 |
+
|
255 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
256 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
257 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
259 |
+
|
260 |
+
def forward(self,x):
|
261 |
+
|
262 |
+
hx = x
|
263 |
+
|
264 |
+
hxin = self.rebnconvin(hx)
|
265 |
+
|
266 |
+
hx1 = self.rebnconv1(hxin)
|
267 |
+
hx = self.pool1(hx1)
|
268 |
+
|
269 |
+
hx2 = self.rebnconv2(hx)
|
270 |
+
hx = self.pool2(hx2)
|
271 |
+
|
272 |
+
hx3 = self.rebnconv3(hx)
|
273 |
+
hx = self.pool3(hx3)
|
274 |
+
|
275 |
+
hx4 = self.rebnconv4(hx)
|
276 |
+
|
277 |
+
hx5 = self.rebnconv5(hx4)
|
278 |
+
|
279 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
280 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
281 |
+
|
282 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
283 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
284 |
+
|
285 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
286 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
287 |
+
|
288 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
289 |
+
|
290 |
+
return hx1d + hxin
|
291 |
+
|
292 |
+
### RSU-4 ###
|
293 |
+
class RSU4(nn.Module):
|
294 |
+
|
295 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
296 |
+
super(RSU4,self).__init__()
|
297 |
+
|
298 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
299 |
+
|
300 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
301 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
302 |
+
|
303 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
304 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
305 |
+
|
306 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
307 |
+
|
308 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
309 |
+
|
310 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
311 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
312 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
313 |
+
|
314 |
+
def forward(self,x):
|
315 |
+
|
316 |
+
hx = x
|
317 |
+
|
318 |
+
hxin = self.rebnconvin(hx)
|
319 |
+
|
320 |
+
hx1 = self.rebnconv1(hxin)
|
321 |
+
hx = self.pool1(hx1)
|
322 |
+
|
323 |
+
hx2 = self.rebnconv2(hx)
|
324 |
+
hx = self.pool2(hx2)
|
325 |
+
|
326 |
+
hx3 = self.rebnconv3(hx)
|
327 |
+
|
328 |
+
hx4 = self.rebnconv4(hx3)
|
329 |
+
|
330 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
331 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
332 |
+
|
333 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
334 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
335 |
+
|
336 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
337 |
+
|
338 |
+
return hx1d + hxin
|
339 |
+
|
340 |
+
### RSU-4F ###
|
341 |
+
class RSU4F(nn.Module):
|
342 |
+
|
343 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
344 |
+
super(RSU4F,self).__init__()
|
345 |
+
|
346 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
347 |
+
|
348 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
349 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
350 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
351 |
+
|
352 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
353 |
+
|
354 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
355 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
356 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
357 |
+
|
358 |
+
def forward(self,x):
|
359 |
+
|
360 |
+
hx = x
|
361 |
+
|
362 |
+
hxin = self.rebnconvin(hx)
|
363 |
+
|
364 |
+
hx1 = self.rebnconv1(hxin)
|
365 |
+
hx2 = self.rebnconv2(hx1)
|
366 |
+
hx3 = self.rebnconv3(hx2)
|
367 |
+
|
368 |
+
hx4 = self.rebnconv4(hx3)
|
369 |
+
|
370 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
371 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
372 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
373 |
+
|
374 |
+
return hx1d + hxin
|
375 |
+
|
376 |
+
|
377 |
+
class myrebnconv(nn.Module):
|
378 |
+
def __init__(self, in_ch=3,
|
379 |
+
out_ch=1,
|
380 |
+
kernel_size=3,
|
381 |
+
stride=1,
|
382 |
+
padding=1,
|
383 |
+
dilation=1,
|
384 |
+
groups=1):
|
385 |
+
super(myrebnconv,self).__init__()
|
386 |
+
|
387 |
+
self.conv = nn.Conv2d(in_ch,
|
388 |
+
out_ch,
|
389 |
+
kernel_size=kernel_size,
|
390 |
+
stride=stride,
|
391 |
+
padding=padding,
|
392 |
+
dilation=dilation,
|
393 |
+
groups=groups)
|
394 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
395 |
+
self.rl = nn.ReLU(inplace=True)
|
396 |
+
|
397 |
+
def forward(self,x):
|
398 |
+
return self.rl(self.bn(self.conv(x)))
|
399 |
+
|
400 |
+
|
401 |
+
class ISNetGTEncoder(nn.Module):
|
402 |
+
|
403 |
+
def __init__(self,in_ch=1,out_ch=1):
|
404 |
+
super(ISNetGTEncoder,self).__init__()
|
405 |
+
|
406 |
+
self.conv_in = myrebnconv(in_ch,16,3,stride=2,padding=1) # nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
407 |
+
|
408 |
+
self.stage1 = RSU7(16,16,64)
|
409 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
410 |
+
|
411 |
+
self.stage2 = RSU6(64,16,64)
|
412 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
413 |
+
|
414 |
+
self.stage3 = RSU5(64,32,128)
|
415 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
416 |
+
|
417 |
+
self.stage4 = RSU4(128,32,256)
|
418 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
419 |
+
|
420 |
+
self.stage5 = RSU4F(256,64,512)
|
421 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
422 |
+
|
423 |
+
self.stage6 = RSU4F(512,64,512)
|
424 |
+
|
425 |
+
|
426 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
427 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
428 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
429 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
430 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
431 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
432 |
+
|
433 |
+
def compute_loss(self, preds, targets):
|
434 |
+
|
435 |
+
return muti_loss_fusion(preds,targets)
|
436 |
+
|
437 |
+
def forward(self,x):
|
438 |
+
|
439 |
+
hx = x
|
440 |
+
|
441 |
+
hxin = self.conv_in(hx)
|
442 |
+
# hx = self.pool_in(hxin)
|
443 |
+
|
444 |
+
#stage 1
|
445 |
+
hx1 = self.stage1(hxin)
|
446 |
+
hx = self.pool12(hx1)
|
447 |
+
|
448 |
+
#stage 2
|
449 |
+
hx2 = self.stage2(hx)
|
450 |
+
hx = self.pool23(hx2)
|
451 |
+
|
452 |
+
#stage 3
|
453 |
+
hx3 = self.stage3(hx)
|
454 |
+
hx = self.pool34(hx3)
|
455 |
+
|
456 |
+
#stage 4
|
457 |
+
hx4 = self.stage4(hx)
|
458 |
+
hx = self.pool45(hx4)
|
459 |
+
|
460 |
+
#stage 5
|
461 |
+
hx5 = self.stage5(hx)
|
462 |
+
hx = self.pool56(hx5)
|
463 |
+
|
464 |
+
#stage 6
|
465 |
+
hx6 = self.stage6(hx)
|
466 |
+
|
467 |
+
|
468 |
+
#side output
|
469 |
+
d1 = self.side1(hx1)
|
470 |
+
d1 = _upsample_like(d1,x)
|
471 |
+
|
472 |
+
d2 = self.side2(hx2)
|
473 |
+
d2 = _upsample_like(d2,x)
|
474 |
+
|
475 |
+
d3 = self.side3(hx3)
|
476 |
+
d3 = _upsample_like(d3,x)
|
477 |
+
|
478 |
+
d4 = self.side4(hx4)
|
479 |
+
d4 = _upsample_like(d4,x)
|
480 |
+
|
481 |
+
d5 = self.side5(hx5)
|
482 |
+
d5 = _upsample_like(d5,x)
|
483 |
+
|
484 |
+
d6 = self.side6(hx6)
|
485 |
+
d6 = _upsample_like(d6,x)
|
486 |
+
|
487 |
+
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
488 |
+
|
489 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)], [hx1,hx2,hx3,hx4,hx5,hx6]
|
490 |
+
|
491 |
+
class ISNetDIS(nn.Module):
|
492 |
+
|
493 |
+
def __init__(self,in_ch=3,out_ch=1):
|
494 |
+
super(ISNetDIS,self).__init__()
|
495 |
+
|
496 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
497 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
498 |
+
|
499 |
+
self.stage1 = RSU7(64,32,64)
|
500 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
501 |
+
|
502 |
+
self.stage2 = RSU6(64,32,128)
|
503 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
504 |
+
|
505 |
+
self.stage3 = RSU5(128,64,256)
|
506 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
507 |
+
|
508 |
+
self.stage4 = RSU4(256,128,512)
|
509 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
510 |
+
|
511 |
+
self.stage5 = RSU4F(512,256,512)
|
512 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
513 |
+
|
514 |
+
self.stage6 = RSU4F(512,256,512)
|
515 |
+
|
516 |
+
# decoder
|
517 |
+
self.stage5d = RSU4F(1024,256,512)
|
518 |
+
self.stage4d = RSU4(1024,128,256)
|
519 |
+
self.stage3d = RSU5(512,64,128)
|
520 |
+
self.stage2d = RSU6(256,32,64)
|
521 |
+
self.stage1d = RSU7(128,16,64)
|
522 |
+
|
523 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
524 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
525 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
526 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
527 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
528 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
529 |
+
|
530 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
531 |
+
|
532 |
+
def compute_loss_kl(self, preds, targets, dfs, fs, mode='MSE'):
|
533 |
+
|
534 |
+
# return muti_loss_fusion(preds,targets)
|
535 |
+
return muti_loss_fusion_kl(preds, targets, dfs, fs, mode=mode)
|
536 |
+
|
537 |
+
def compute_loss(self, preds, targets):
|
538 |
+
|
539 |
+
# return muti_loss_fusion(preds,targets)
|
540 |
+
return muti_loss_fusion(preds, targets)
|
541 |
+
|
542 |
+
def forward(self,x):
|
543 |
+
|
544 |
+
hx = x
|
545 |
+
|
546 |
+
hxin = self.conv_in(hx)
|
547 |
+
#hx = self.pool_in(hxin)
|
548 |
+
|
549 |
+
#stage 1
|
550 |
+
hx1 = self.stage1(hxin)
|
551 |
+
hx = self.pool12(hx1)
|
552 |
+
|
553 |
+
#stage 2
|
554 |
+
hx2 = self.stage2(hx)
|
555 |
+
hx = self.pool23(hx2)
|
556 |
+
|
557 |
+
#stage 3
|
558 |
+
hx3 = self.stage3(hx)
|
559 |
+
hx = self.pool34(hx3)
|
560 |
+
|
561 |
+
#stage 4
|
562 |
+
hx4 = self.stage4(hx)
|
563 |
+
hx = self.pool45(hx4)
|
564 |
+
|
565 |
+
#stage 5
|
566 |
+
hx5 = self.stage5(hx)
|
567 |
+
hx = self.pool56(hx5)
|
568 |
+
|
569 |
+
#stage 6
|
570 |
+
hx6 = self.stage6(hx)
|
571 |
+
hx6up = _upsample_like(hx6,hx5)
|
572 |
+
|
573 |
+
#-------------------- decoder --------------------
|
574 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
575 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
576 |
+
|
577 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
578 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
579 |
+
|
580 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
581 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
582 |
+
|
583 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
584 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
585 |
+
|
586 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
587 |
+
|
588 |
+
|
589 |
+
#side output
|
590 |
+
d1 = self.side1(hx1d)
|
591 |
+
d1 = _upsample_like(d1,x)
|
592 |
+
|
593 |
+
d2 = self.side2(hx2d)
|
594 |
+
d2 = _upsample_like(d2,x)
|
595 |
+
|
596 |
+
d3 = self.side3(hx3d)
|
597 |
+
d3 = _upsample_like(d3,x)
|
598 |
+
|
599 |
+
d4 = self.side4(hx4d)
|
600 |
+
d4 = _upsample_like(d4,x)
|
601 |
+
|
602 |
+
d5 = self.side5(hx5d)
|
603 |
+
d5 = _upsample_like(d5,x)
|
604 |
+
|
605 |
+
d6 = self.side6(hx6)
|
606 |
+
d6 = _upsample_like(d6,x)
|
607 |
+
|
608 |
+
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
609 |
+
|
610 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
611 |
+
# return F.sigmoid(d1)
|