Update README.md
Browse files
README.md
CHANGED
@@ -98,34 +98,25 @@ pip install -r requirements.txt
|
|
98 |
## Usage
|
99 |
|
100 |
```python
|
101 |
-
import numpy as np
|
102 |
from skimage import io
|
103 |
-
import torch
|
104 |
-
import torch.nn.functional as F
|
105 |
-
from torchvision.transforms.functional import normalize
|
106 |
-
from briarmbg import BriaRMBG
|
107 |
from PIL import Image
|
|
|
|
|
108 |
|
109 |
-
model_path = "
|
110 |
-
im_path = "
|
111 |
|
112 |
net = BriaRMBG()
|
113 |
-
if torch.cuda.is_available()
|
114 |
-
|
115 |
-
else:
|
116 |
-
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
117 |
net.eval()
|
118 |
|
119 |
# prepare input
|
120 |
-
model_input_size=[1024,1024]
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
im_size=im.shape[0:2]
|
125 |
-
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
126 |
-
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
127 |
-
image = torch.divide(im_tensor,255.0)
|
128 |
-
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
129 |
|
130 |
if torch.cuda.is_available():
|
131 |
image=image.cuda()
|
@@ -134,14 +125,10 @@ if torch.cuda.is_available():
|
|
134 |
result=net(image)
|
135 |
|
136 |
# post process
|
137 |
-
|
138 |
-
ma = torch.max(result)
|
139 |
-
mi = torch.min(result)
|
140 |
-
result = (result-mi)/(ma-mi)
|
141 |
|
142 |
# save result
|
143 |
-
|
144 |
-
pil_im = Image.fromarray(np.squeeze(im_array))
|
145 |
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
146 |
orig_image = Image.open(im_path)
|
147 |
no_bg_image.paste(orig_image, mask=pil_im)
|
|
|
98 |
## Usage
|
99 |
|
100 |
```python
|
|
|
101 |
from skimage import io
|
102 |
+
import torch, os
|
|
|
|
|
|
|
103 |
from PIL import Image
|
104 |
+
from briarmbg import BriaRMBG
|
105 |
+
from utilities import preprocess_image, postprocess_image
|
106 |
|
107 |
+
model_path = f"{os.path.dirname(__file__)}/model.pth"
|
108 |
+
im_path = f"{os.path.dirname(__file__)}/example_input.jpg"
|
109 |
|
110 |
net = BriaRMBG()
|
111 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
112 |
+
net.load_state_dict(torch.load(model_path, map_location=device))
|
|
|
|
|
113 |
net.eval()
|
114 |
|
115 |
# prepare input
|
116 |
+
model_input_size = [1024,1024]
|
117 |
+
orig_im = io.imread(im_path)
|
118 |
+
orig_im_size = orig_im.shape[0:2]
|
119 |
+
image = preprocess_image(orig_im, model_input_size)
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if torch.cuda.is_available():
|
122 |
image=image.cuda()
|
|
|
125 |
result=net(image)
|
126 |
|
127 |
# post process
|
128 |
+
result_image = postprocess_image(result[0][0], orig_im_size)
|
|
|
|
|
|
|
129 |
|
130 |
# save result
|
131 |
+
pil_im = Image.fromarray(result_image)
|
|
|
132 |
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
133 |
orig_image = Image.open(im_path)
|
134 |
no_bg_image.paste(orig_image, mask=pil_im)
|