--- license: other tags: - background-removal - Pytorch - vision --- # BRIA Background Removal v1.4 Model Card 100% automatically Background removal capability across all categories and image types that capture the variety of the world. Built and validated on a comprehensive dataset containing an equal distribution of general stock images, eComm, gaming and ads. ### Model Description - **Developed by:** BRIA AI - **Model type:** Background removal image-to-image model - **License:** [bria-rmbg-1.4](https://bria.ai/bria-2-0-huggingface-model-license-agreement/) - **Model Description:** BRIA RMBG 1.4 is an image-to-image model trained exclusively on a professional-grade dataset. It is designed and built for commercial use, subject to a commercial agreement with BRIA. - **Resources for more information:** [BRIA AI](https://bria.ai/) ### Get Access BRIA RMBG 1.4 is available under the BRIA RMBG 1.4 License Agreement. To access the model, please contact us. By submitting this form, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & conditions](https://bria.ai/terms-and-conditions/). ## Training data Bria-RMBG model was trained over 12000 high quality, high resolution, fully licensed images. The training set as well as the validation benchmark if a holistic representation of the commercial world containing a distribution of general stock images, eComm, gaming and ads. Distribution of images: | Category | Distribution | | -----------------------------------| -----------------------------------:| | Objects only | 45.11% | | People with objects/animals | 25.24% | | People only | 17.35% | | people/objects/animals with text | 8.52% | | Text only | 2.52% | | Animals only | 1.89% | | Category | Distribution | | -----------------------------------| -----------------------------------------:| | Photorealistic | 87.70% | | Non-Photorealistic | 12.30% | | Category | Distribution | | -----------------------------------| -----------------------------------:| | Non Solid Background | 52.05% | | Solid Background | 47.95% | Category | Distribution | | -----------------------------------| -----------------------------------:| | Single main foreground object | 51.42% | | Multiple objects in the foreground | 48.58% | All images were manualy labeled pixel-wise accuratly. ## Qualitative Evaluation ## Usage ```python import os import numpy as np from skimage import io from glob import glob from tqdm import tqdm import cv2 import torch.nn.functional as F from torchvision.transforms.functional import normalize from models import BriaRMBG input_size=[1024,1024] net=BriaRMBG() model_path = "./model.pth" im_path = "./example_image.jpg" result_path = "." if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net=net.cuda() else: net.load_state_dict(torch.load(model_path,map_location="cpu")) net.eval() # prepare input im = io.imread(im_path) if len(im.shape) < 3: im = im[:, :, np.newaxis] im_size=im.shape[0:2] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8) image = torch.divide(im_tensor,255.0) image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) if torch.cuda.is_available(): image=image.cuda() # inference result=net(image) # post process result = torch.squeeze(F.interpolate(result[0][0], size=im_size, mode='bilinear') ,0) ma = torch.max(result) mi = torch.min(result) result = (result-mi)/(ma-mi) # save result im_name=im_path.split('/')[-1].split('.')[0] im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8) cv2.imwrite(os.path.join(result_path, im_name+".png"), im_array) ```